Syntheta
- 4
- 0
I have the PDE:
(v_r)^2+(v_z)^2=p^2 where v=v(r,z), p=p(r,z).
I have some boundary conditions, of sorts:
p=c*r*exp(r/a)exp(z/b) for some constants a,b,c, at r=infinity and z=infinity
p=0 at f=r, where
(f_r)^2=p*r/v-v*v_r
(f_z)^2=p*r/v+v*v_r
Is it possible that one could obtain an analytic solution (with some unknown constants of course)? Or if one has to use numerical integration, what would be the best method?
Thanks in advance!
(v_r)^2+(v_z)^2=p^2 where v=v(r,z), p=p(r,z).
I have some boundary conditions, of sorts:
p=c*r*exp(r/a)exp(z/b) for some constants a,b,c, at r=infinity and z=infinity
p=0 at f=r, where
(f_r)^2=p*r/v-v*v_r
(f_z)^2=p*r/v+v*v_r
Is it possible that one could obtain an analytic solution (with some unknown constants of course)? Or if one has to use numerical integration, what would be the best method?
Thanks in advance!