The Triangle Inequality: How to Prove It?

  • Thread starter Thread starter Saladsamurai
  • Start date Start date
  • Tags Tags
    Proofs Work
Saladsamurai
Messages
3,009
Reaction score
7

Homework Statement



Prove the following:

(i) ##|x|-|y| \le |x-y|##

and

(ii) ##|(|x|-|y|)| \le |x-y|\qquad## (Why does this immediately follow from (i) ?)

Homework Equations



##|z| = \sqrt{z^2}##

The Attempt at a Solution



(i) ##(|x|-|y|)^2 = |x|^2 - 2|x||y| + |y|^2 = x^2 - 2|x||y| + y^2 \le x^2 - 2xy + y^2= (x-y)^2 \implies \boxed{|x|-|y| \le |x-y|.}##(ii) For this part, I looked at the question "Why does this immediately follow from (i)" for inspiration and saw that if I could show that ##|(|x|-|y|)| \le |x-y|## then the proof is complete by transitivity.

Is it as simple as:

##|(|x|-|y|)| = \sqrt{(|(|x|-|y|)|)^2} = \sqrt{(|x|-|y|)^2} = |x|-|y|?##

I think that it is, but it is getting late :redface:
 
Physics news on Phys.org
If |x|> |y|, (ii) is identical to (i). If |y|< |x|, swap the two.
 
Saladsamurai said:
Is it as simple as:

##|(|x|-|y|)| = \sqrt{(|(|x|-|y|)|)^2} = \sqrt{(|x|-|y|)^2} = |x|-|y|?##

No, it isn't. ##\sqrt{(|x|-|y|)^2} = |x|-|y|## only when ##|x|\ge |y|##.
 
Saladsamurai said:
(i) ##(|x|-|y|)^2 = |x|^2 - 2|x||y| + |y|^2 = x^2 - 2|x||y| + y^2 \le x^2 - 2xy + y^2= (x-y)^2 \implies \boxed{|x|-|y| \le |x-y|.}##

Remember that ##\sqrt{a^2}=|a|## and if ##0\le a\le b## then ##\sqrt a\le \sqrt b##. So how can you change the above conclusion?
 
Isn't this what is called the kaushy swartz?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top