MHB *2 values of x for perpendicular vectors

Click For Summary
The discussion centers on finding the values of x for which the vectors (2x/(x-3)) and ((x+1)/5) are perpendicular. The quadratic equation derived is 2x^2 + 7x - 15, yielding potential solutions of x = -5 and x = 3/2. Initially, there was confusion regarding the validity of x = 3/2, as it seemed not to produce perpendicular slopes. However, upon further examination, the error was identified, confirming that both values are indeed correct. The conversation highlights the importance of careful calculation in vector analysis.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The vectors $$\left(\frac{2x}{x-3}\right)$$ and $$\left(\frac{x+1}{5}\right)$$ are $$\perp$$ for $$2$$ values of $$x $$

what is the quadratic equation which the 2 values of x satisfy

well I got $$2x^2+7x-15$$ which gives $$x=-5$$ and $$x=\frac{3}{2}$$
-5 seems to work but
$$\frac{3}{2}$$ doesn't or is there another way to do this.

thanks ahead,
 
Mathematics news on Phys.org
Re: 2 values of x for perpendicular vectors

karush said:
The vectors $$\left(\frac{2x}{x-3}\right)$$ and $$\left(\frac{x+1}{5}\right)$$ are $$\perp$$ for $$2$$ values of $$x $$

what is the quadratic equation which the 2 values of x satisfy

well I got $$2x^2+7x-15$$ which gives $$x=-5$$ and $$x=\frac{3}{2}$$
-5 seems to work but
$$\frac{3}{2}$$ doesn't or is there another way to do this.

thanks ahead,

Hi karush! :)

What is the reason you think $x=\frac 3 2$ does not work?
It is a proper solution.
 
Re: 2 values of x for perpendicular vectors

when I plugged $$\frac{3}{2}$$ in the slopes didn't seem $$\perp$$
 
Re: 2 values of x for perpendicular vectors

karush said:
when I plugged $$\frac{3}{2}$$ in the slopes didn't seem $$\perp$$

Well... which vectors do you get if you plug it in?
 
Re: 2 values of x for perpendicular vectors

OK found my error...
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K