206.07.05.88 Int rational expression

In summary, $I_{88}=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx$, $u=x+2$, $du=dx$, $I_{88}=\int\frac{1}{u\sqrt{u^2+1}}du$, and $\arctan{x}=\arctan{x+2}$.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:
 
Physics news on Phys.org
  • #2
karush said:
$\tiny{206.07.05.88}$
$\textit{so far ?}$:cool:
So far so good. :)

EDIT: See answer #7.
 
Last edited:
  • #3
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
 
  • #4
karush said:
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
Better, $t=\dfrac{1}{u}$. Then, $$\displaystyle\int\frac{1}{u\sqrt{u^2+1}} du =\ldots =-\int\frac{1}{\sqrt{t^2+1}} dt=\ldots $$

EDIT: See answer #7.
 
Last edited:
  • #5
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$

That should be

$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$

$$u=\cosh(z),\quad\text{ d}u=\sinh(z)\text{ d}z\quad z=\arcosh(u)$$

$$\int\frac{\sinh(z)}{\cosh(z)\sqrt{\cosh^2(z)-1}}\text{ d}z=\int\frac{1}{\cosh(z)}\text{ d}z$$

$$\int\frac{2}{e^z+e^{-z}}\text{ d}z=2\int\frac{e^z}{e^{2z}+1}\text{ d}z=2\arctan(e^z)+C$$

$$z=\arcosh(u)=\log\left(u+\sqrt{u^2-1}\right)$$

so, after back-subbing the rest of the way, we have

$$\int\frac{1}{(x+2)\sqrt{x^2+4x+3}}\text{ d}x=2\arctan\left(x+2+\sqrt{(x+2)^2-1}\right)+C$$
 
  • #6
greg1313 said:
Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$
That should be
$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$
Sorry, I had a distraction error. :)
 
  • #7
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

As has been pointed out, this should be

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} \end{align*}$

From here

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} &= \frac{1}{2} \int{ \frac{2\,u}{u^2\,\sqrt{u^2 - 1}} } \end{align*}$

Now let $\displaystyle \begin{align*} v = u^2 - 1 \implies \mathrm{d}v = 2\,u \end{align*}$ giving

$\displaystyle \begin{align*} \frac{1}{2}\int{ \frac{1}{\left( v + 1\right) \,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right]\,2\,\sqrt{v}}\,\mathrm{d}v } \end{align*}$

Now let $\displaystyle \begin{align*} w = \sqrt{v} \implies \mathrm{d}w = \frac{1}{2\,\sqrt{v}}\,\mathrm{d}v \end{align*}$ giving

$\displaystyle \begin{align*} \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right] \,2\,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{ w^2 + 1}\,\mathrm{d}w } \\ &= \arctan{ \left( w \right) } + C \\ &= \arctan{ \left( \sqrt{v} \right) } + C \\ &= \arctan{ \left( \sqrt{ u^2 - 1 } \right) } + C \\ &= \arctan{ \left[ \sqrt{ \left( x + 2 \right) ^2 - 1 } \right] } + C \end{align*}$
 

Related to 206.07.05.88 Int rational expression

What is 206.07.05.88 Int rational expression?

206.07.05.88 Int rational expression is a mathematical expression that represents a ratio of two integers. It can also be referred to as a rational number or fraction.

How do you simplify 206.07.05.88 Int rational expression?

To simplify 206.07.05.88 Int rational expression, you need to find the greatest common factor (GCF) of the numerator and denominator and divide both by it. This will result in a reduced form of the expression.

What are the properties of 206.07.05.88 Int rational expression?

The properties of 206.07.05.88 Int rational expression include closure, commutativity, associativity, and distributivity. Closure means that the result of an operation on two rational expressions will also be a rational expression. Commutativity means that the order of the terms does not affect the result. Associativity means that the grouping of terms does not affect the result. Distributivity means that multiplication and addition can be interchanged.

How is 206.07.05.88 Int rational expression used in real life?

206.07.05.88 Int rational expression is used in various real-life situations such as cooking, calculating discounts and sales, and determining proportions in recipes. It is also used in construction, engineering, and finance to calculate measurements, ratios, and percentages.

What is the difference between 206.07.05.88 Int rational expression and irrational expression?

The main difference between 206.07.05.88 Int rational expression and irrational expression is that rational expressions can be expressed as a ratio of two integers, while irrational expressions cannot and they involve non-terminating decimal numbers. Rational expressions can be simplified to a finite value, while irrational expressions cannot be simplified.

Similar threads

  • Calculus
Replies
8
Views
2K
  • Calculus
Replies
6
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
  • Calculus
Replies
1
Views
1K
  • Calculus
Replies
2
Views
1K
Replies
3
Views
1K
  • Calculus
Replies
8
Views
1K
Back
Top