I 4-momentum of a massless particle

pellman
Messages
683
Reaction score
6
The 4-momentum of a massless particle traveling in the z direction is (k, 0, 0, k). What is the significance of the value of k? It does not determine the speed since they always travel at light speed. If one particle has momentum (k, 0, 0, k) and another has (j, 0, 0, j) with j not equal to k, what is the physical difference between them?
 
Physics news on Phys.org
The momentum it carries is different. The energy is different. So how hard it would push on a light sail and the transitions it could excite are different. ##E=h\nu##, so the frequency and wavelength are different.
 
  • Like
Likes vanhees71
pellman said:
The 4-momentum of a massless particle traveling in the z direction is (k, 0, 0, k). What is the significance of the value of k? It does not determine the speed since they always travel at light speed. If one particle has momentum (k, 0, 0, k) and another has (j, 0, 0, j) with j not equal to k, what is the physical difference between them?
I second @Ibix reply. The two particles have the same velocity (speed and direction) but energy and momentum are different and consequently wavelength and frequency.
 
  • Like
Likes vanhees71
I knew it would be something I already knew! Lol! Thank you, guys!
 
  • Like
Likes vanhees71 and Dale
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top