4 * sin(ϕ * 32)(A new theorem in development)

  • Thread starter Thread starter greggory
  • Start date Start date
  • Tags Tags
    Theorem
greggory
Messages
14
Reaction score
0
So, I was working with a theorem that I had been working on about more properties of a circle, more invisible properties.

Here is my work for the theorem. It isn't much, but it is something:

http://img6.imageshack.us/img6/8938/theorem.png

I noticed that when I did sin of 45, I got the value 0.707106, which I knew was close to π / 4, so I continued to increase the value. When I got to sin of 51, I got 0.777, which was really close, so I tried 52. Unfortunately, it would have been 3.15, which I knew wasn't π, but I knew something. I tried what(if I remember who it was) Archemidies, who specified a values that was higher and lower than pi. So, I did sin(51) < π < sin(52). I then began adding decimals after 51. I got to sin(51.7575) * 4, which was equal to 3.14159. I then noticed that ϕ * 32 was similar to this value. So, I replaced the value with ϕ * 32, which is approximately 51.777, and I got the value 3.142438 approximately.

From here, I noticed that maybe this formula could have calculate pi faster than any other method before, because when I tried using the Fibonacci numbers to calculate phi for this formula, one time the value was close to 3.14159265, ect, but it kept going, then when it reached 3.1424 it stopped and went from there.

Does this mean anything?
 
Last edited by a moderator:
Mathematics news on Phys.org
greggory said:
So, I was working with a theorem that I had been working on about more properties of a circle, more invisible properties.

Here is my work for the theorem. It isn't much, but it is something:

http://img6.imageshack.us/img6/8938/theorem.png

I noticed that when I did sin of 45, I got the value 0.707106, which I knew was close to π / 4, so I continued to increase the value. When I got to sin of 51, I got 0.777, which was really close, so I tried 52. Unfortunately, it would have been 3.15, which I knew wasn't π, but I knew something. I tried what(if I remember who it was) Archemidies, who specified a values that was higher and lower than pi. So, I did sin(51) < π < sin(52).
You can stop right here, as this is manifestly not true. For any real number x, -1 <= sin(x) <= 1.
greggory said:
I then began adding decimals after 51. I got to sin(51.7575) * 4, which was equal to 3.14159. I then noticed that ϕ * 32 was similar to this value. So, I replaced the value with ϕ * 32, which is approximately 51.777, and I got the value 3.142438 approximately.

From here, I noticed that maybe this formula could have calculate pi faster than any other method before, because when I tried using the Fibonacci numbers to calculate phi for this formula, one time the value was close to 3.14159265, ect, but it kept going, then when it reached 3.1424 it stopped and went from there.

Does this mean anything?

What you seem to be doing is attempting to solve the equation 4 sin(x) = \pi/4. A solution to this equation is x = sin-1(\pi/4) ≈ .903339 radians ≈ 51.75°.
 
Last edited by a moderator:
It is true that, for x measured in radians, \lim_{x\to 0}sin(x)/x= 1. That is, for x very close to 0, sin(x) will be very close to x. Once you get up to things like 45 degrees, which is equivalent to \pi/4 radians, they are still "close" but not "very close". The farther from 0 you get, the farther apart those get.
 
@Mark44
OH, thank you for the contribution. I never saw that there.

Edited.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top