MHB 412.0.10 ok so going with dot product with 07312400508

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use the UPC scheme to determine the check digit for the number $07312400508$.

here is the example from the book
View attachment 8330
ok so going with dot product with 07312400508
\begin{align*}\displaystyle
&\quad (0731 2 4 0 0 5 0 8)\cdot(3,1,3,1,3,1,3,1,3)\\
&= 0\cdot3+7\cdot1
+3\cdot3+1\cdot1
+2\cdot3+4\cdot1
+0\cdot3+0\cdot1
+5\cdot3+0\cdot1
+8\cdot3 \\
&=7+9+1+6+4+15+24\\
&=66\\
66mod10&=6
\end{align*}

so far?? but the number only has 11 digits
 
Last edited:
Physics news on Phys.org
karush said:
ok so going with dot product with 07312400508
\begin{align*}\displaystyle
&\quad (0731 2 4 0 0 5 0 8)\cdot(3,1,3,1,3,1,3,1,3)\\
&= 0\cdot3+7\cdot1
+3\cdot3+1\cdot1
+2\cdot3+4\cdot1
+0\cdot3+0\cdot1
+5\cdot3+0\cdot1
+8\cdot3 \\
&=7+9+1+6+4+15+24\\
&=66\\
66\pmod{10}&=6
\end{align*}

so far?? but the number only has 11 digits
That is correct so far. You now have to add a twelfth digit so as to make the checksum zero$\pmod{10}$.
 
Opalg said:
That is correct so far. You now have to add a twelfth digit so as to make the checksum zero$\pmod{10}$.
What would be the 12th digit?
 
karush said:
What would be the 12th digit?
What do you have to add to 66 to get a multiple of 10?
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top