(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

See figure attached.

2. Relevant equations

3. The attempt at a solution

My professor came up with this example in lecture and the way he went it about it was very confusing so hopefully you guys can help me clear up some of steps/thought process he took.

We are asked to find all the electric field vectors between each plate, so he begins to write equations for these electric fields.

He first notes that,

[tex]E_{inside conductor} = 0[/tex]

He then proceeds to write,

[tex]V = E_{2}d + E_{3}d[/tex]

I'll put in my thought process for all the work he skipped,

[tex]V = \int_{l_{1}} \vec{E_{2}} \vec{dl} + \int_{l_{2}} \vec{E_{3}} \vec{dl} [/tex]

Since,

[tex]\vec{E_{2}} \text{ and } \vec{E_{3}} \text{ are parallel to } \vec{dl}[/tex]

[tex]\Rightarrow V = E_{2} \int_{l_{1}}dl + E_{3} \int_{l_{2}}dl[/tex]

Since the distance between the plates in the same,(i.e. a distance d)

[tex]V = E_{2}d + E_{3}d[/tex]

He then writes another equation,

[tex]A\epsilon_{0}E_{3} - A\epsilon_{0}E_{2} = Q[/tex]

Where is he getting this from? I know that's the difference in flux, but it looks like it's coming from Gauss' Law applied to a Gaussian surface around the middle plate that has a charge Q.

[tex]\oint_{S} \vec{E} \cdot \hat{n}dS = \frac{Q_{enclosed}}{\epsilon_{0}}[/tex]

It seems as though

[tex]E = E_{3} - E_{2}[/tex]

because then,

[tex]\Rightarrow \left( E_{3} - E_{2} \right)A = \frac{Q}{\epsilon_{0}} [/tex]

Rearranging gives me his original equation,

[tex]A\epsilon_{0}E_{3} - A\epsilon_{0}E_{2} = Q[/tex]

Why is the electric field for the gaussian surface enclosed the middle plate (E3-E2)?

After writing those 2 equations, it's obvious that we can solve for E2 & E3.

He then states that,

[tex]\rho_{S} = \epsilon_{0} \left( \vec{E} \cdot \hat{n} \right)[/tex]

and denotes the charge on the plate to the right of the leftmost plate as

[tex]Q_{2}=A\rho_{S2} - A\rho_{S1} = A\epsilon_{0}E_{2} - A\epsilon_{0}E_{1}[/tex]

(This comes from Gauss' Law around the plate, where the electric field is (E2-E1) [Just like my question above, why is it (E2-E1)?])

We now have 1 equation, and 2 unknowns (i.e. Q2 and E1).

Then he explains how the voltage source is going to pull charge off the 2 rightmost plates and place it onto the plate with charge Q2.

[tex]Q_{2} = A \rho_{S3} = A\epsilon_{0}E_{3}[/tex]

Since we know E3 he solves for Q2 in terms of E3 and it is found that,

[tex]E_{1} = E_{2} - E_{3}[/tex]

The two main points which I'm confused about are,

- Why is the electric field for the gaussian surface enclosing the middle plate (E3-E2)?
- Where does he get the equation,

[tex]\rho_{S} = \epsilon_{0} \left( \vec{E} \cdot \hat{n} \right)[/tex]

If I anything I said sounds goofy, or if I am misunderstanding anything else please feel encouraged to correct me.

Thanks again!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: 5 Parallel Large Flat Electrodes (Potential/E-Field)

**Physics Forums | Science Articles, Homework Help, Discussion**