- 22,169
- 3,327
Dods said:Lemme try this out then.
Lets say I wanted the set of all points (in the cartesian plane) in the rectangle that has vertices at (0,0), (3,0), (0,5), (3,5).
M=\{t \in \mathbb{R^2}~\vert~\exists x,y \in \mathbb{R}:~t=\{\{x\},\{x,y\}\}:~0 \leq x \leq 3 \ \wedge \ 0 \leq y \leq 5\}
Would this be not completely rigorous, but allowed?
This is correct except that your last ##:## should be a ##\wedge##. A ##:## is only allowed after a quantifier. It's just a notational issue, so not really important.
I think this is already completely rigorous, why do you think it is not completely rigorous?
Here is an attempt to make it completely rigorous:
M=\{t \in \mathbb{R^2}~\vert~\exists x,y \in \mathbb{R}:~t=\{\{x\},\{x,y\}\}:~ \forall t [(\exists A \in t:~ \exists a \in \mathbb{R}:~ A=\{a,a\}:~0 \leq a \leq 3) \wedge (\exists B \in t:~ \exists a, b \in \mathbb{R}:~B=\{a,b\}:~0 \leq a \leq 3 \wedge 0 \leq b \leq 5)]\}
The problem here is that you already are using a variable ##t##. So you can't do something like ##\forall t## anymore. The only way you can do a ##\forall t## is if you never used the variable ##t## before. So I would change things by
M=\{t \in \mathbb{R^2}~\vert~\exists x,y \in \mathbb{R}: ~t=\{\{x\},\{x,y\}\}~\wedge~ (\exists A \in t:~ \exists a \in \mathbb{R}:~ A=\{a,a\}:~0 \leq a \leq 3) \wedge (\exists B \in t:~ \exists a, b \in \mathbb{R}:~B=\{a,b\}:~0 \leq a \leq 3 \wedge 0 \leq b \leq 5)]\}
This is also good. But your previous solutions (that you thought is not rigorous) is already fine.
Also, at first, I tried to make the same set but instead of with 3 and 5, with arbitrary real numbers (say w and n). Would this not work for the same reasons having a general function set does not work?
It depends whether w and n are fixed or not. If they are fixed, then you can make a set just fine.
However, if they are not fixed (that is: if you want to make a general rectangle where w and n can be anything), then this will not work. However, you can make a set of all rectangles.