A cylinder rotating on a plane with friction and then moving across a frictionless plane to a collision

Click For Summary
The discussion centers on the dynamics of a cylinder transitioning from a frictional to a frictionless plane. It is suggested that while the angular velocity increases and translational velocity decreases on the frictional surface, total kinetic energy remains conserved. Upon reaching the frictionless plane, the energy is said to convert entirely to translational kinetic energy, leading to a cessation of rolling. Questions arise regarding the mechanics of how the rotation stops without an opposing torque when transitioning to the frictionless surface. The conversation highlights the complexities of friction and motion in this scenario.
Jason Ko
Messages
21
Reaction score
6
Homework Statement
A cylinder of radius R, mass M and moment of inertia I
about its symmetry axis starts at x = -d. It travels with initial speed Vo towards the
positive x direction, and rotates with angular velocity Vo /R clockwise, as shown in the
figure. For x < 0, the friction is non-zero. For 0 < x < d, the surface is frictionless.
Assume that the cylinder makes an elastic collision with a frictionless immovable wall at
x = d. Find the final translational velocity (magnitude and direction, when it is no longer
changing) of the center of mass of the cylinder, in terms of R, M, I and Vo. Assume that
surface extends to negative infinity.
Relevant Equations
V=rω
I think the angular velocity keep increasing on the plane with friction and the translational velocity keep decreasing due to friction while the total kinetic energy is conserved. When it moves to the frictionless plane, all energy converts to translational kinetic energy and it stop rolling. When it collides with the wall, all energy goes to the cylinder itself since the wall is unmovable. After it moves to the plane with friction, its translational velocity decreases till 0. I know something’s wrong there but where exactly?

IMG_0004.png
 
Last edited by a moderator:
Physics news on Phys.org
Jason Ko said:
I think the angular velocity keep increasing on the plane with friction and the translational velocity keep decreasing due to friction
Why?
Remember, friction acts to oppose relative motion of surfaces in contact.
What surfaces in contact are moving relatively to each other?
Jason Ko said:
When it moves to the frictionless plane, all energy converts to translational kinetic energy and it stop rolling.
Why? What torque stops the rotation?
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 10 ·
Replies
10
Views
791
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
14
Views
3K