(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Hello everyone. My problem is as follows: In a spontaneous process where two bodies at different temperatures [itex]T_{1}[/itex] and [itex]T_{2}[/itex], where [itex]T_{1}>T_{2}[/itex], are put together until they reach thermal equilibrium. The number of atoms or molecules of the first is [itex]N_{1}[/itex] and [itex]N_{2}[/itex] for the second one, with [itex]N_{1} \neq N_{2}[/itex], and they have heat capacities equal to [itex]C_{V_{1}}=aN_{1}k[/itex] and [itex]C_{V_{2}}=aN_{2}k[/itex], with [itex]a[/itex] given with the appropriate units. Past some sufficiently large time, the system reaches a temperature [itex]T[/itex], provided that [itex]T_{1}>T>T_{2}[/itex], which is in function of the initial temperatures and the number of atoms or molecules of the two bodies. The problem is that i can't demonstate that the change of the entropy of the system as a whole is positive, i.e. [tex]\bigtriangleup S>0[/tex]

2. Relevant equations

When i compute the change of the entropy for the i-th body, i get

[tex]\bigtriangleup S_{i}=\int_{T_{i}}^T \! \frac{1}{T} \, \mathrm{d} Q=\int_{T_{i}}^T \! \frac{aN_{i}k}{T} \, \mathrm{d} T=aN_{i}k\int_{T_{i}}^T \! \frac{1}{T} \, \mathrm{d} T=aN_{i}k\ln{\frac{T}{T_{i}}}[/tex]

With the hypothesis that the entropy is an extensive property, then [tex]\bigtriangleup S=\bigtriangleup S_{1}+\bigtriangleup S_{2}=aN_{1}k\ln{\frac{T}{T_{1}}}+aN_{2}k\ln{\frac{T}{T_{2}}}[/tex]

So i just have to prove that [tex]N_{1}\ln{\frac{T}{T_{1}}}+N_{2}\ln{\frac{T}{T_{2}}} > 0[/tex]

3. The attempt at a solution

I think that i have to use the two cases ([itex]N_{1}>N_{2}[/itex] and [itex]N_{1}<N_{2}[/itex]), and using the fact that [itex]T_{1}>T>T_{2}[/itex], to prove the inequality, but i have tried to do it in very different ways, and i get nothing, so i think there is some trick to demonstrating that, but i'm still a bit of an amateur in proving tricky inequalities.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: A demonstration on the necessary positive change in the entropy

**Physics Forums | Science Articles, Homework Help, Discussion**