A function with certain conditions on derivatives at 0

phoenixthoth
Messages
1,600
Reaction score
2
a function with certain conditions on derivatives at 0-generating functions

i don't know how to do superscripts, so let's say [f,n](x) is the nth derivative of f at x.

let A be the set of infinitely differentiable functions from I to R where I is some possibly infinite open interval containing 0.

for any c in R,
let S_c={f in A such that [f,n+1](0) = c [f,n](0) (1 - [f,n](0)) for all n>=0}.

what are the properties of S_c?

ideally, i'd like a statement like f is in S_c iff f is of the following algebraic form...

is S_c a proper subset of
T_c:={f in A such that [f,n+1](x) = c [f,n](x) (1 - [f,n](x)) for all n>=0 and all x in I}?

a closely related way to ask this is if
f(x)=SUM[(a[k] x^k)/k!, {k,0,oo}] and for all k,
a[k+1]=c a[k](1-a[k]),
what is f?

i'm trying to find a generating function for the sequence of iterates for the discrete logistic sequence. the things I've seen about generating functions only refer to linear recurrence relations.
 
Last edited:
Mathematics news on Phys.org
phoenixthoth said:
a function with certain conditions on derivatives at 0-generating functions

i don't know how to do superscripts, so let's say [f,n](x) is the nth derivative of f at x.
##f^{(n)}(x)##
let A be the set of infinitely differentiable functions from I to R where I is some possibly infinite open interval containing 0.
##A=C^\infty(I)\, , \,0\in I\subseteq \mathbb{R}## open
for any c in R,
let S_c={f in A such that [f,n+1](0) = c [f,n](0) (1 - [f,n](0)) for all n>=0}.
##S_c := \{\,f\in C^\infty(I)\,|\,f^{(n+1)}(0)=c\cdot f^{(n)}(0)\text{ for all }n\in \mathbb{N}_0\,\}##
what are the properties of S_c?

ideally, i'd like a statement like f is in S_c iff f is of the following algebraic form...

is S_c a proper subset of
T_c:={f in A such that [f,n+1](x) = c [f,n](x) (1 - [f,n](x)) for all n>=0 and all x in I}?
##T_c := \{ \, f \in C^\infty (I) \,|\, f^{(n+1)} (x) =c \cdot f^{(n)} (x) - c\cdot (f^{(n)}(x))^2 \text{ for all }n\in \mathbb{N}_0\, , \,x\in I\,\}##
a closely related way to ask this is if
f(x)=SUM[(a[k] x^k)/k!, {k,0,oo}] and for all k,
a[k+1]=c a[k](1-a[k]),
what is f?
##f(x)=\sum_{k=0}^\infty a_k\dfrac{x^k}{k!}\, , \,a_{k+1}=ca_k -ca_k^2 \stackrel{?}{\Longrightarrow} f##
i'm trying to find a generating function for the sequence of iterates for the discrete logistic sequence. the things I've seen about generating functions only refer to linear recurrence relations.
It looks as if the ansatz with a Taylor series is the best approach. For ##S_c## there are only local conditions, so it makes sense to look at the local Taylor series. For ##T_c## there could be a possibility of an exponential function ##A(x)e^{B(x)}## if at all. But at first sight it could well be that ##T_c= \{\,0\,\}##.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top