What I tried to do with this proof is show that if a function is differentiable at a point, then the limit of the function at this point is the value of the function at that point. This seems like a pretty obvious point (since differentiability depends on continuity and continuity depends on the existence of the limit), so I tried to go a step further and identify a specific delta for each epsilon that would guarantee the existence of this limit. I was hopefully successful.(adsbygoogle = window.adsbygoogle || []).push({});

I spent about two hours working out the details (don't worry - it's not too long) and when I finally finished I was too exhausted to see if my proof stood up to a bunch of specific tests. Anyway, I was hoping someone more experience in math could check my proof. If it's wrong, show me where.

The purpose of this proof is to make finding deltas easy when I know that a function is differentiable. This is acceptable becausefindingdelta is not a necessary part of a limit proof. If my first guess for delta work for all epsilons, then I have completed the proof.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A general e-d proof

**Physics Forums | Science Articles, Homework Help, Discussion**