Constructions based on set theory
A standard construction
A standard construction in set theory, a special case of the von Neumann ordinal construction,[7] is to define the natural numbers as follows:
Set 0 := { }, the empty set,
and define S(a) = a ∪ {a} for every set a. S(a) is the successor of a, and S is called the successor function.
By the axiom of infinity, the set of all natural numbers exists and is the intersection of all sets containing 0 which are closed under this successor function. This then satisfies the Peano axioms.
Each natural number is then equal to the set of all natural numbers less than it, so that
0 = { }
1 = {0} = {{ }}
2 = {0, 1} = {0, {0}} = {{ }, {{ }}}
3 = {0, 1, 2} = {0, {0}, {0, {0}}} ={{ }, {{ }}, {{ }, {{ }}}}
n = {0, 1, 2, ..., n−2, n−1} = {0, 1, 2, ..., n−2,} ∪ {n−1} = {n−1} ∪ (n−1) = S(n−1)
and so on.