A particle in a 2d circle with potential

Bokul
Messages
4
Reaction score
0
Hello,

What would be the right approach to solve for a particle's wavefunction/ energy eigenvalues inside of a 2d cicrle with a potential V(r) where r is the radial distance of a particle from the center of the circle? V(r) is known and is some sort of a well potential going to infinity at R (circle's radius) and to 0 at 0.
 
Physics news on Phys.org


I'd start to look for the right coordinates according to the given symmetries of the system. It's obvious that for your problem the best choice are plane polar coordinates. Then you write down the time-independent Schrödinger equation (i.e., the eigenvalue problem for the Hamiltonian) in these coordinates and solve for the given boundary conditions.

The good thing with polar coordinates is that the 2D Laplacian separates, i.e., you find the energy eigenfunctions through the ansatz

\psi(r,\phi)=R(r) \Phi(\phi).
 


Thx, but, I guess, I asked my question too far from its main point. Here what it actually is: once I've applied the separation of variables, I will end up with a 2nd order differential equation for r with V(r) inside of it. And I don't know how to solve it. That is my main problem and, therefore, a question for you.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top