MHB A positive integer divisible by 2019 the sum of whose decimal digits is 2019.

AI Thread Summary
A positive integer divisible by 2019 with a sum of decimal digits equal to 2019 can be constructed using the number 4038 followed by 167 blocks of 2019. The total digital sum of this number is confirmed to be 2019. The number is also a multiple of 2019, with the quotient being a sequence of 2 followed by 167 blocks of 1. This construction demonstrates the existence of such an integer. The solution showcases a clever approach to the problem.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the existence of a positive integer divisible by $2019$ the sum of whose decimal digits is $2019$.Source: Nordic Math. Contest
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Prove the existence of a positive integer divisible by $2019$ the sum of whose decimal digits is $2019$.Source: Nordic Math. Contest
[sp]$2019$ has digital sum $12$. Twice $2019$ is $4038$, which has digital sum $15$. Also, $$2019 = 15 + 2004 = 15 + 12\cdot167.$$ So the number $$4038\;\overbrace{2019\;2019\;\ldots\;2019}^{167\text{ blocks}},$$ whose decimal expansion consists of $4038$ followed by $167$ blocks of $2019$, has decimal sum $2019$. It is clearly a multiple of $2019$, the quotient being $$2\;\overbrace{0001\;0001\;\ldots\;0001}^{167\text{ blocks}}.$$

[/sp]
 
Thankyou, Opalg, for your participation and - as always - for a clever answer! (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top