MHB Can This Product Inequality Be Proven for Positive x and Natural n?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality Proof
AI Thread Summary
The discussion focuses on proving the inequality $$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n $$ for positive x and natural n. It is established that for x=1, both sides equal 2^n, leading to separate analyses for the cases where 0<x<1 and x>1. For x>1, a difference equation approach shows that the product α_n(x) is greater than or equal to the sequence γ_n(x) and the expression β_n(x). The case for 0<x<1 is set to be analyzed in a subsequent post, indicating a structured approach to proving the inequality. The discussion also references the AM-GM inequality to support the argument.
Albert1
Messages
1,221
Reaction score
0
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
 
Last edited by a moderator:
Mathematics news on Phys.org
Albert said:
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$

Let's define...

$\displaystyle \alpha_{n} (x) = \prod_{k=1}^{n} (1 + x^{k})$

$\displaystyle \beta_{n} (x) = (1 + x^{\frac{n+1}{2}})^{n}\ (1)$

For x=1 is $\displaystyle \alpha_{n} = \beta_{n} = 2^{n}$, so that we analyse separately the two cases $\displaystyle 0<x<1$ and $\displaystyle x>1$. If $\displaystyle x>1$ we observe that $\alpha_{n}$ obeys to the difference equation...

$\displaystyle \alpha_{n+1} (x) = \alpha_{n}(x)\ (1+x^{n+1}),\ \alpha_{1}(x)= 1+x\ (2)$

... and if we call $\gamma_{n} (x)$ the sequence that obeys to the difference equation...

$\displaystyle \gamma_{n+1} (x) = \gamma_{n}(x)\ (1+x^{\frac{n+1}{2}}),\ \gamma_{1}(x)= 1+x\ (3)$

... we conclude that for $\displaystyle x>1$ is...

$\displaystyle \alpha_{n}(x) \ge \gamma_{n}(x) \ge \beta_{n}(x)\ (4)$

The case $\displaystyle 0 < x < 1$ will be analysed in next post...

Kind regards

$\chi$ $\sigma$
 
we have x^a + x^b >= 2x^(a+b)/2 by AM GM inequality

adding 1 + x^(a+b) on both sides we get

(1+x^a)(1+x^b) >= 1 + 2x^(a+b)/2 + x^(a+b) = ( 1+ x^(a+b)/2)^2

Putting b = n+ 1 -a we get

(1+x^a)(1+x^(n+1- a) >= (1+ x^(n+1)/2)^2

For n even taking a from 1 to n/2 we get n/2 expressions and multiplying them out we get

(1+x)(1+x^2)( 1 + x^3) .. (1+x^n) >= (1+ x^(n+1)/2)^n as

For n odd we have n-1 ( running a from 1 to (n-1)/2 we get (n-1)/2 pairs and

As (1+x^(n+1)/2)= (1+x^(n+1)/2) and multiplying we get the result
 
Albert said:
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
Since $x^k + x^{n+1-k} - 2x^{(n+1)/2} = \bigl(x^{k/2} - x^{(n+1-k)/2}\bigr)^2 \geqslant0$, it follows that $x^k+ x^{n+1-k} \geqslant 2x^{(n+1)/2}.$ Add $1 + x^{n+1}$ to each side to see that $$(1+x^k)(1+x^{n+1-k}) = 1 + x^k+ x^{n+1-k} + x^{n+1} \geqslant 1 + 2x^{(n+1)/2} + x^{n+1} = \bigl(1 + x^{(n+1)/2}\bigr)^2.$$ If $n$ is even, multiply together the inequalities $(1+x^k)(1+x^{n+1-k}) \geqslant \bigl(1 + x^{(n+1)/2}\bigr)^2$ for $k=1,2,\ldots,n/2$ to get the result. If $n$ is odd, multiply the inequalities for $k=1,2,\ldots,(n-1)/2$, and then multiply each side by a further factor $(1 + x^{(n+1)/2})$.Edit. http://www.mathhelpboards.com/members/kaliprasad/ got there first.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
12
Views
2K
Replies
1
Views
640
Replies
6
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
1
Views
2K
Back
Top