A question of the complete metric space

simpleeyelid
Messages
12
Reaction score
0
Continuously differentiable Function C^1<br /> {} \left[0,1\right] is complete with respect to the metric space
D_\infty{}{f,g}=sup{\left|f(t)-g(t)\right|}+sup{\left|f^1{}(t)-g^1{}(t)\right|}

but not in the d_\infty{}{f,g}=sup{\left|f(t)-g(t)\right|}

Thanks for the helps in advance.

Regards...

BI
 
Last edited:
Physics news on Phys.org
For the counterexample, can you come up with a sequence of differentiable functions that converges to a non-differentiable function? Hint: Choose a very simple function that's continuous, but not differentiable.
 
yes, that is what I am trying to do, however, it is strange that, some theorem in the book "Analysis and Mathematical physics" says the 2nd holds in C[a,b] wrt the second distance function, I am now quite confused...This is an original question from the book real analysis with economic applications.
 
Last edited:
The space of continuous functions is complete with respect to the second distance function. But what you're trying to show is that the space of continuously differentiable functions is not complete with respect to that norm. Since every continuously differentiable function is continuous, you know that the limit of any sequence of continuously differentiable functions has to be continuous. The problem is asking you to find sequence of differentiable functions whose limit (which is continuous) is not differentiable.
 
OK, thanks for your answers, the 2nd one is OK now!
 
Back
Top