High School A Simpler Way to Find the Shaded Area?

Click For Summary
To determine the percentage of the shaded area in a square, the discussion revolves around finding a simpler geometric or trigonometric method, avoiding Cartesian coordinates. The calculated shaded area is confirmed to be 5%. The user faced challenges in proving the length of line segment EG, initially estimating it visually and later confirming it with a ruler. There is a desire for a more straightforward approach to solving the problem without complex calculations. The conversation highlights the need for efficient methods in geometric area calculations.
Saracen Rue
Messages
150
Reaction score
10
TL;DR
Is there an easier way to determine what percentage of this square is bound by the shaded area of 4 line segments
Consider the following scenario:
20230127_222828.png


Given that points ##M## and ##N## are the midpoints of their respective line segments, what would be the fastest way to determine what percentage of the squares total area is shaded purple?

I managed to determine that the purple shaded area is ##5\text{%}## as per my working below:
20230127_222843.png


The only real problem I had with this is that it took me a genuinely long time to figure out. After I drew it up by hand, I suspected that line segment ##EG## was roughly equal to ##\frac{a}{3}## from visual inspection alone, and I did use a ruler to confirm this. However, it took me quite a while to prove it was mathematically.

I feel as though there must be a simpler way to go about solving the question using just geometry/trigonometry (I do realise that it'd probably be easy enough to solve if you put this on a Cartesian Plane with ##A## at the origin, but I wanted to try avoiding that method if possible), and if so, can anyone point me in the right direction?
 
Mathematics news on Phys.org
Say square ABCD=1
quadrilateral EFGH = ##\triangle## ACM - ##\triangle## AEF - quadrilateral HCMG
where
##\triangle##ACM=1/4,
##\triangle## AEF = ##\triangle## AEN - ##\triangle## AFN = 1/12 - 1/20,
quadrilateral HCMG = ##\triangle##CHD-##\triangle## GDM = 1/4 - 1/12.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
24K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
21
Views
5K
Replies
5
Views
5K