B A Simpler Way to Find the Shaded Area?

AI Thread Summary
To determine the percentage of the shaded area in a square, the discussion revolves around finding a simpler geometric or trigonometric method, avoiding Cartesian coordinates. The calculated shaded area is confirmed to be 5%. The user faced challenges in proving the length of line segment EG, initially estimating it visually and later confirming it with a ruler. There is a desire for a more straightforward approach to solving the problem without complex calculations. The conversation highlights the need for efficient methods in geometric area calculations.
Saracen Rue
Messages
150
Reaction score
10
TL;DR Summary
Is there an easier way to determine what percentage of this square is bound by the shaded area of 4 line segments
Consider the following scenario:
20230127_222828.png


Given that points ##M## and ##N## are the midpoints of their respective line segments, what would be the fastest way to determine what percentage of the squares total area is shaded purple?

I managed to determine that the purple shaded area is ##5\text{%}## as per my working below:
20230127_222843.png


The only real problem I had with this is that it took me a genuinely long time to figure out. After I drew it up by hand, I suspected that line segment ##EG## was roughly equal to ##\frac{a}{3}## from visual inspection alone, and I did use a ruler to confirm this. However, it took me quite a while to prove it was mathematically.

I feel as though there must be a simpler way to go about solving the question using just geometry/trigonometry (I do realise that it'd probably be easy enough to solve if you put this on a Cartesian Plane with ##A## at the origin, but I wanted to try avoiding that method if possible), and if so, can anyone point me in the right direction?
 
Mathematics news on Phys.org
Say square ABCD=1
quadrilateral EFGH = ##\triangle## ACM - ##\triangle## AEF - quadrilateral HCMG
where
##\triangle##ACM=1/4,
##\triangle## AEF = ##\triangle## AEN - ##\triangle## AFN = 1/12 - 1/20,
quadrilateral HCMG = ##\triangle##CHD-##\triangle## GDM = 1/4 - 1/12.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top