Undergrad "A system tries to minimize total potential energy"

Click For Summary
The discussion centers on the principle of minimizing potential energy in systems, particularly in the context of an object launched from Earth at escape velocity. It questions whether this principle applies to unbound systems, suggesting that it may only be relevant to bound systems that can exchange energy irreversibly. The conversation includes a mathematical example of a harmonic oscillator, illustrating how kinetic and potential energies fluctuate while maintaining constant total energy. It emphasizes that systems do not "choose" to minimize energy, as this anthropomorphism misrepresents their behavior. The conclusion highlights that energy transfer is a fundamental aspect of systems with multiple energy reservoirs.
Swamp Thing
Insights Author
Messages
1,045
Reaction score
775
While reading this thread on Stack Exchange... https://physics.stackexchange.com/q...oes-a-system-try-to-minimize-potential-energy ... a question came to mind : -

Say an object is launched away from Earth at a velocity greater than the escape velocity. This system will not end up with its potential energy less than the initial value. Apparently, therefore, we need to qualify the principle of "tendency towards minimum potential energy" so as to exclude such cases? If so, how would we do that rigorously?
 
Last edited:
Physics news on Phys.org
As far as I know it only applies to bound systems that can irreversibly exchange energy with another system
 
  • Like
Likes vanhees71 and Swamp Thing
There's energy conservation for a closed system. Usually the kinetic and potential energy both change with time but such that the total energy stays constant. Take the harmonic oscillator as an example:
$$m \ddot{x}=-D x.$$
The general solution is
$$x(t)=x_0 \cos(\omega t -\varphi_0),$$
where the amplitude, ##x_0##, and "phase", ##\varphi_0## are integration constants, and ##\omega=\sqrt{D/m}##.

The kinetic and potential energies are
$$T=\frac{m}{2} \dot{x}^2, \quad V=\frac{D}{2} x^2.$$
As a function of time you get
$$T=\frac{m \omega^2}{2} \sin^2(\omega t -\varphi_0), \quad V=\frac{D}{2} x_0^2 \cos^2(\omega t-\varphi_0).$$
Now ##m \omega^2=D## and thus the total energy
$$E=T+V=\frac{D}{2} x_0^2 [\sin^2(\omega t-\varphi_0) + \cos^2(\omega t-\varphi_0)]=\frac{D}{2} x_0^2=\text{const}.$$
 
You're anthropomorphizing inanimate systems. They hate it when you do that.

If you have a system with two energy reservoirs, of any kind (potential and kinetic is but one example), and all the energy is in one, the only thing the system can do with the energy is move it to the other. There is nothing more to this than "if you're all the way to the left, the only direction you can move is to the right".

Swamp Thing said:
While reading this thread on Stack Exchange..
Is that's confusing you, maybe you should go elsewhere.
 
Last edited:
  • Like
  • Haha
Likes jbriggs444, berkeman, Dale and 1 other person
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K