A tractable Baker-Campbell-Hausdorff formula

  • Thread starter Thread starter arkobose
  • Start date Start date
  • Tags Tags
    Formula
arkobose
Messages
4
Reaction score
0
1. Let A and B be two matrices, and \lambda be a continuous parameter.
2. Now, define a function f(\lambda) \equiv e^{\lambda A}e^{\lambda B}. We need to show that \frac{df}{d\lambda} = \left\{A + B + \frac{\lambda}{1!}[A, B] + \frac{\lambda^2}{2!}[A, [A, B]] + ... \right \}f

Once this is shown, setting \lambda = 1, and [A, [A, B]] = [B, [A, B]] = 0 gives us a Baker-Campbell-Hausdorff formula.


3. I had shown this result quite a while ago, but now I have forgotten completely what I had done. This time, I tried differentiating f(\lambda) w.r.t the argument, and then using the commutation was able to get the first two terms on the R.H.S., but thereafter I got stuck. The very minimal hint would be all that I need.

Thank you!
 
Last edited:
Physics news on Phys.org
Without seeing your exact steps I can't say much, but you may need to expand out an exponential or two and work out some commutators term-by-term.
 
I solved it. Thanks anyway!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top