About momentum operator in other coordinate system

KFC
Messages
477
Reaction score
4
Hi there, does anyone know where can I found a material or note about how to deduce momentum operator in coordinate system other than linear coordinate (especially in spherical coordinate system)?

Thanks in advanced.
 
Physics news on Phys.org
KFC said:
Hi there, does anyone know where can I found a material or note about how to deduce momentum operator in coordinate system other than linear coordinate (especially in spherical coordinate system)?

Thanks in advanced.

Express the other coordinates in terms of x, and y, and z, and then use the chain rule. For example,

<br /> \frac{\partial}{\partial x} = \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta}.<br />
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top