Absorbance of UV light by glass

AI Thread Summary
The discussion focuses on investigating the absorbance of UV light by glass of varying thickness, with an emphasis on theoretical calculations rather than practical experimentation due to time constraints. The Beer-Lambert Law is highlighted as a key principle for understanding light absorption through a medium, which includes concepts like the absorption coefficient and extinction coefficient. Participants suggest that absorbance will likely plateau at a certain thickness, indicating that glass can still allow UV light to cause sunburn. There is uncertainty regarding the exact values for UV absorption coefficients in glass, particularly for standard soda lime glass. Overall, the conversation seeks guidance on how to establish a theoretical framework for the assignment without conducting physical experiments.
N0b0dy
Messages
5
Reaction score
0
Hi, I'm doing an investigation into the absorbance of UV light by glass of varying thickness (constant density and standard type of glass) for an assigment. However, we're not actually supposed to carry out the investigation due to time constraints, so we're meant to make up the numbers ourselves. This would be easy if I was doing a topic such as projectile motion. However, in this case I have literally no idea what figures I should include. Could anyone please help get me started by suggesting some increments of glass thickness that would demonstrate a particular relationship? I assume the graph (absorbance % against glass thickness) would plateau off at a certain point because I've heard many people say that you can still be sunburnt no matter what kind of glass it is.
 
Science news on Phys.org
Since this is homework, rather than give you the answer, I'll just give you a few hints:

The Beer-Lambert Law, or Beer's Law, or a few other permutations deals with absorption of light through a medium as the light passes through said medium:
http://en.wikipedia.org/wiki/Beer-Lambert_law

You'll note that one of the formulations involves the absorption coefficient \alpha which is elaborated on further down in the article. Part of that elaboration is the extinction coefficient \kappa.

The extinction coefficient of some glasses (including plain-jane soda lime glass) is given here (no idea whether or not they're right, however):
http://www.colostate.edu/orgs/SEAL/research/IAM/iamv2/manual.txt

Keep in mind that this is probably for a visible colour, and when dealing with real glass and UV light, the approximation given for absorption coefficient is probably going to differ a fair bit from the 'real' value (which I can't easily find anywhere on the internet)

EDIT: Disclaimer, I am not an optics guy.
 
Last edited by a moderator:
MATLABdude said:
Since this is homework, rather than give you the answer, I'll just give you a few hints:

The Beer-Lambert Law, or Beer's Law, or a few other permutations deals with absorption of light through a medium as the light passes through said medium:
http://en.wikipedia.org/wiki/Beer-Lambert_law

You'll note that one of the formulations involves the absorption coefficient \alpha which is elaborated on further down in the article. Part of that elaboration is the extinction coefficient \kappa.

The extinction coefficient of some glasses (including plain-jane soda lime glass) is given here (no idea whether or not they're right, however):
http://www.colostate.edu/orgs/SEAL/research/IAM/iamv2/manual.txt

Keep in mind that this is probably for a visible colour, and when dealing with real glass and UV light, the approximation given for absorption coefficient is probably going to differ a fair bit from the 'real' value (which I can't easily find anywhere on the internet)

EDIT: Disclaimer, I am not an optics guy.
So there's not really any practical way of working this out unless I actually carry through with the experiment? This is high school standard so I assume I don't need to go into such great detail. Could anyone provide me with a hint as to when the absorbance plateaus off which I can base my 'results' on?
 
Last edited by a moderator:
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top