Absorption coefficient and Linear Optical Susceptibility

PhysicsTruth
Messages
117
Reaction score
18
Homework Statement
For a complex refractive index ##n^*=n+ik##, establish the relationship between the absorption coefficient and linear optical susceptibility. Take ##(n+ik)^2 = \epsilon = 1 + \chi##
Relevant Equations
##(n+ik)^2 = \epsilon = 1+ \chi##
##I=I_0 e^{-\alpha z}##
##\alpha = \frac{4\pi k}{\lambda}##
##\alpha## is considered to be the absorption coefficient for a beam of light of maximum intensity ##I_0##. It's related to the complex part of the refractive index as we have shown above. Now, I have a doubt. Should I solve for ##k## from the quadratic equation in terms of the linear optical susceptibility ##\chi## directly, or should I assume a complex form of ##\chi## and separate the real and imaginary terms and then proceed?
 
Physics news on Phys.org
PhysicsTruth said:
Homework Statement:: For a complex refractive index ##n^*=n+ik##, establish the relationship between the absorption coefficient and linear optical susceptibility. Take ##(n+ik)^2 = \epsilon = 1 + \chi##
I've (extremely) limited knowledge of this topic. But, since no one else has answered yet, see if this helps...

First note that:
##(n+ik)^2 = \epsilon = 1 + \chi##
should be:
##(n+ik)^2 = \epsilon_r = 1 + \chi##

The equation tells you that susceptibility, ##\chi##, and relative permittivity, ##\epsilon_r##, are being treated as complex quantities.

PhysicsTruth said:
... or should I assume a complex form of ##\chi## and separate the real and imaginary terms and then proceed?
That sound like the way to go. It only requires simple algebra to express the real and imaginary parts of ##\chi## in terms of ##\alpha## (along with ##n## and ##\lambda##).
 
  • Like
Likes vanhees71 and PhysicsTruth
Yeah, I've done that thankfully. Thanks for the heads up!
 
  • Like
Likes vanhees71 and Steve4Physics
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top