Abstract Algebra - Cyclic groups

basketm19
Messages
2
Reaction score
0
1. Problem: Suppose a is a group element such that |a^28| = 10 and |a^22| = 20. Determine |a|.

I was doing some practice problems for my exam next week and I could not figure this out. (This is my first post on PF btw)

2. Homework Equations : Let a be element of order n in group and let k be a positive integer. Then <a^k> = <a^gcd(n,k)> and |a^k| = n/gcd(n,k).

3. Attempt at solution:

10 = n/gcd(n, 28); 20 = n/gcd(n, 22)

Setting n equal to each other, 10gcd(n, 28) = 20gcd(n,22)

gcd(n, 28) = 2gcd(n, 22)

The possible values for n are 4, 8, 12, 16, 20, 24, ... , so on.

Not sure where to go from here.
 
Physics news on Phys.org
gcd(440,280) = 40.

this means we can find integers a,b with

440a + 280b = 40, that is

11a + 7b = 1. a = 2, b = -3 will work.

thus a^40 = (a^(880))(a^-(840))

= (a^(440))^2(a^(280))^(-3)

= ((a^22)^20)^2((a^28)^10)^(-3)

= e^2(e^-3) = ee = e.

that means |a| divides 40, which gives us just 1,2,4,5,8,10,20 and 40 as possibilities.

since a^28 ≠ e, we can rule out 1,2, and 4 as possibilities.

suppose a^5 = e. then a^28 would have order 5,

since (a^28)^5 = (a^5)^28. similarly, we can rule out

every divisor of 10 and 20, leaving just 8 and 40.

so suppose |a| = 8.

then (a^28)^2 = a^56 = (a^8)^7 = e, but |a^28| = 10.

what's left?
 
Thanks for the response. But I don't understand why you are starting out with gcd(440,280) = 40.
 
basketm19 said:
Thanks for the response. But I don't understand why you are starting out with gcd(440,280) = 40.

We know that the order of a^{28} is 10. So a^{280}=e. Similarly, we know that a^{440}=e.

For each integers x and y, it follows that a^{280x+440y}=e. We wish to minimize 280x+440y (since this will be a small number such that the order divides this number). The minimal number is exactly gcd(280,440). This is why he started by this.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top