Abstract Algebra: Ring Proof (Multiplicative Inverse)

RJLiberator
Gold Member
Messages
1,094
Reaction score
63

Homework Statement


Suppose R is a commutative ring with only a finite number of elements and no zero divisors. Show that R is a field.

Homework Equations



Unit is an element in R which has a multiplicative inverse. If s∈R with r*s = 1.
A zero divisor is an element r∈R such that there exists s∈R and rs = 0 (or sr = 0).

The Attempt at a Solution



1. Since R is a commutative ring, we only need to prove one axiom, that is that it satisfies the multiplicative inverse for all values in R.
2. I have a theorem that we just went over that states:
Theorem: If R is a finite ring, then for all r ∈ R, r is either a unit or a zero divisor.
3. Since the question states that there is no zero divisors in this finite ring, we can use the theorem to state that they must all be units.
4. Noting that they are all units means they all have the stipulation that x*s = 1. Meaning they all have a multiplicative inverse.

Proof is done.

Is this a complete proof?
 
Physics news on Phys.org
RJLiberator said:

Homework Statement


Suppose R is a commutative ring with only a finite number of elements and no zero divisors. Show that R is a field.

Homework Equations



Unit is an element in R which has a multiplicative inverse. If s∈R with r*s = 1.
A zero divisor is an element r∈R such that there exists s∈R and rs = 0 (or sr = 0).

The Attempt at a Solution



1. Since R is a commutative ring, we only need to prove one axiom, that is that it satisfies the multiplicative inverse for all values in R.
2. I have a theorem that we just went over that states:
Theorem: If R is a finite ring, then for all r ∈ R, r is either a unit or a zero divisor.
3. Since the question states that there is no zero divisors in this finite ring, we can use the theorem to state that they must all be units.
4. Noting that they are all units means they all have the stipulation that x*s = 1. Meaning they all have a multiplicative inverse.

Proof is done.

Is this a complete proof?
Yes. If I were in a pedantic mood, I could remark that you should exclude 0 in some statements.
 
  • Like
Likes RJLiberator
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top