Accelerating pulleys (3 pulleys and 3 masses)

AI Thread Summary
The discussion revolves around calculating the acceleration of three masses connected by pulleys, with specific weights given for each mass. The initial calculations involve applying Newton's second law and considering the effects of a fictitious force on the system. Corrections were made to the calculations, particularly regarding the final value of acceleration, with a consensus reached on the correct values for the accelerations of m1 and m2 relative to the ground. The final results indicate that m1 has an acceleration of approximately 0.47 m/s², while m2 accelerates at about 5.133 m/s². The importance of including units and direction in the final answers was also emphasized.
Yossi33
Messages
22
Reaction score
3
Homework Statement
newtons second law and multiple pulley problem.
Relevant Equations
f=ma
hi,i have this question :
m1=3kg m2=6kg m3=20kg
there is no friction between m3 and the floor.
what is the acceleration of each block?

my attempt is :
the pulley that moves is moving downward at the acceleration of m3.
so the system of m1,m2 is moving downward at the acceleration of m3, then i exerted a "ghost force" on that system that works upward and it works on m1 with magnitude of m1a* and on m2 with magnitude m2a*

then i solved their acceleration as they are not in accelerating system:
m2g-T-m2a*=m2a (1)
T+m1a*-m1g=m1a (2)
the moving pulley is 2T=T* (3)
and of m3 ----> T*=m3a* (6)

if i add 1 +2 --> m2g-m2a*+m1a*-m1g=(m1+m2)a
(m2-m1)g-(m2-m1)a*=(m1+m2)a / divide by (m2-m1)
g-a*=(m1+m2)/(m2-m1) multiply a
g-a*=3a (4)

then i subtitue (4) in (2) ----> T=m1(a-a*+g)
T=3(g/3 -a*/3 -a* +g)
T=4g-4a* (5)
subtitue (5) and (6) in (4)
8g-8a*=m3a*
8g=28a*
a*=8g/28 (7)

subtitue (7) in (4) ---> g/3-8g/78=a

i don't have answers, so please tell me if I am wrong and if i am, then how should i solve this. thank you

20211203_000900.jpg
 
Last edited by a moderator:
Physics news on Phys.org
I think your calculations are correct, except I believe the 78 in the last line of the calculation should be 84. Note that ##a## is the magnitude of the acceleration of ##m_1## and ##m_2## in the frame moving with the falling pulley. You still need to find the accelerations of ##m_1## and ##m_2## relative to the lab frame.

The "ghost" force is often called a "fictitious" force.
 
Last edited:
  • Like
Likes Yossi33 and BvU
It seems to me your equations 1 and 2 are correct.
 
The magnitude i got is a*=2.8=a3
And a=2.33=a13=a23(a1 and a2 relative to m3)

So acceleration of m1 relative to the ground is a1=-a13 + a3 ------》 a1=-2.8+2.33=0.47
And a2=a23+a3 ----》a2=2.8+2.33=5.133
?

Thanks for your help
 
Those numbers agree with what I got. You should include units and indicate the direction of each acceleration.

Nice work.
 
Thanks for your help
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top