erobz
Gold Member
- 4,445
- 1,840
hutchphd said:What if you require a1 to be zero.? Do Eq 2and 3 look correct?...I don'tthink so. Just make positive up and use one inertial frame and you will get @SammyS result I believe. So what does your does the Lagrangian method give you for a1? I have a result for a1 but am tired of writing down wrong stuff! (It is not particularly pretty but seems correct)
erobz said:$$\mathcal{L} = T - U $$
$$ \mathcal{L} = \frac{1}{2} m_1 { \dot l_1 }^2+ \frac{1}{2} m_2 \left( { \dot l_2}- {\dot l_1 } \right)^2 + \frac{1}{2} M \left( {\dot l_1}+ {\dot l_2} \right) ^2 + m_1 g l_1 + m_2 g ( L - l_1 + l_2) + M g ( L - l_1 + S - l_2 )$$
$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} }$$
$$ ( m_1 - m_2 -M ) g = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2}$$
$$ \ddot{l_1} = \frac{(m_1 -m_2 -M)g - (M-m_2) \ddot{l_2}}{m_1 + m_2 + M} \tag{1}$$
$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} }$$
$$( m_2 -M ) g = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2} \tag{2}$$
Substitute ##(1) \to (2)## and reduce:
$$\ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
There it is ( sub ##(3) \to (1)## ). Not particularly pretty indeed. For ##m_1 = 0 ## , it reduces to ##\ddot {l_2} = 0g## , and ##\ddot{l_1} = -g##
I haven't checked other end cases...I was too exhausted when I had finished all the algebra (for the 3rd time ).