- #1

Omnirizon

- 6

- 0

my intuition is that it is primarily gravity. air resistance should have minimal influence. if this is the case, then it seems that humans (and most other legged animals) would reach their top speed almost immediately, since they are dealing with the constant of gravity limiting net acceleration, and not the exponentially increasing force of fluid resistance (ie air) sapping acceleration. for this to be the case, it would seem that as the runner's velocity increases, the acceleration of gravity towards the center of the planet would increase on the runner, to the point that the runner's net acceleration is zero.

Am I correct here? if this is the case, then is it complicated mechanics of moving legs and flexing muscles that cause whatever lapse between starting velocity and top speed of running animals? also, how would the reduction in acceleration due to gravity be modeled in a runner? some sort of trigonometry to account for the fact that runner's force is forward, while gravity is pulling downwards?

if it is trigonometry, would it be modeled as a right triangle, with the force the runner exerts as the tangent, and the effects of gravity one leg. then their top speed can be found by finding the length of the other leg (knowing the angle must be 90). just as an abstract model that is?

sorry for all the questions, I hope I am being clear enough. I am not a physics major, just a programmer attempting to find some computationally tractable model of simplified physics for a little game.

-Omni