luisgml_2000
- 42
- 0
Homework Statement
To obtain the action angle coordinates por the spherical pendulum.
Homework Equations
<br /> H=\frac{1}{2mh^2}\left(p_\theta^2+\frac{p_\phi^2}{\sin^2\theta}\right)+mgh\cos\theta<br />
<br /> \frac{1}{2mh^2}\left(\left(\frac{\partial G}{\partial \theta}\right)^2+\frac{\left(\frac{\partial G}{\partial\phi}\right)^2}{\sin^2\theta}\right)+mgh\cos\theta=-\frac{\partial G}{\partial t}<br />
<br /> G=-\alpha_1 t+ \alpha_2\phi \pm\int{\sqrt{2mh^2(\alpha_1-mgh\cos\theta)-\frac{\alpha_2^2}{\sin^2\theta}}d\theta}<br />
<br /> p_\phi&=&\alpha_2\\<br /> p_\theta&=& \pm\sqrt{2mh^2(\alpha_1-mgh\cos\theta)-\frac{\alpha_2^2}{\sin^2\theta}}<br />
<br /> J_\phi=\frac{1}{2\pi}\oint p_\phi d\phi=\alpha_2<br />
<br /> J_\theta=\frac{1}{2\pi}\oint p_\theta d\theta=\frac{1}{2\pi}\oint \pm\sqrt{2mh^2(\alpha_1-mgh\cos\theta)-\frac{\alpha_2^2}{\sin^2\theta}} d\theta<br /> <br />
The Attempt at a Solution
The Hamilton-Jacobi equation is separable in these coordinates and hence the calculation of the action coordinates gets simpler. In fact, the action corresponding to \phi is trivial but I cannot evaluate the integral for the other action. Can someone help me out?
By the way somewhere on the Internet I saw that one cannot define action-angle coordinates for this problem but I find that assertion puzzling since this system is an integrable one and because the phase space for it is bounded.
Thanks
Last edited: