MHB Adam's Circles: Splitting & Connecting Segments

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Circles Splitting
AI Thread Summary
Adam draws 18 segments related to a circle of radius 1 centered at the origin. He first creates 6 segments from the origin to the circle's boundary, dividing the upper semicircle into 7 equal parts. Next, he draws altitudes from these intersection points to the x-axis and then segments from the x-axis to the circle's boundary. The discussion centers on calculating the product of the lengths of these segments, with participants confirming that the answer involves the product of sine values related to the angles formed. The final consensus emphasizes that the product, rather than the sum, is the correct approach for this geometric configuration.
maxkor
Messages
79
Reaction score
0
Adam has a circle of radius $1$ centered at the origin.

- First, he draws $6$ segments from the origin to the boundary of the circle, which splits the upper (positive $y$) semicircle into $7$ equal pieces.

- Next, starting from each point where a segment hit the circle, he draws an altitude to the $x$-axis.

- Finally, starting from each point where an altitude hit the $x$-axis, he draws a segment directly away from the bottommost point of the circle $(0,-1)$, stopping when he reaches the boundary of the circle.

What is the product of the lengths of all $18$ segments Adam drew?
 

Attachments

  • c99.png
    c99.png
    7.7 KB · Views: 101
Mathematics news on Phys.org
Beer induced query follows.
maxkor said:
... What is the product of the lengths of all $18$ segments Adam drew?
Product or sum?
 
jonah said:
Beer induced query follows.

Product or sum?
Product.
 
Just to check whether I'm thinking along the right lines, should the answer be
$\dfrac{7^3}{169\cdot2^{12}}$
?
 
Beer induced reaction follows.
Opalg said:
Just to check whether I'm thinking along the right lines, should the answer be
$\dfrac{7^3}{169\cdot2^{12}}$
?
I get the same; although mine's just an approximation, 0.000495504345414
Curious as to how you got an exact expression.
Did you use the math god Wolframalpha?
I was under the impression that while the endpoints of the green lines can be epressed exactly, I settled for an approximation. I guess I didn't took it far enough.
The product of the red and blue lines are of course
$1^6*\bigg[{\displaystyle \prod_{n=1}^{6} \sin\left(\frac{180n}{7}\right)}\bigg]$
 
maxkor said:
Adam has a circle of radius $1$ centered at the origin.

- First, he draws $6$ segments from the origin to the boundary of the circle, which splits the upper (positive $y$) semicircle into $7$ equal pieces.

- Next, starting from each point where a segment hit the circle, he draws an altitude to the $x$-axis.

- Finally, starting from each point where an altitude hit the $x$-axis, he draws a segment directly away from the bottommost point of the circle $(0,-1)$, stopping when he reaches the boundary of the circle.

What is the product of the lengths of all $18$ segments Adam drew?
The six points on the semicircle have coordinates $\bigl(\cos\frac{k\pi}7,\sin\frac{k\pi}7\bigr)\ (1\leqslant k\leqslant6)$. The red segments all have length $1$ and the $k$th blue segment has length $\sin\frac{k\pi}7$.

The $k$th green segment lies on the line joining $(0,-1)$ and $\bigl(\cos\frac{k\pi}7,0\bigr)$, which has equation $x = (y+1)\cos\frac{k\pi}7$. That meets the semicircle when $ (y+1)^2\cos^2\frac{k\pi}7 + y^2 = 1$, which leads after a bit of simplification to the point $$(x,y) = \Bigl(\frac{2\cos\frac{k\pi}7}{1+\cos^2\frac{k\pi}7},\frac{1-\cos^2\frac{k\pi}7}{1+\cos^2\frac{k\pi}7}\Bigr).$$ So if $d$ is the length of the $k$th green segment then $$d^2 = \Bigl(\frac{2\cos\frac{k\pi}7}{1+\cos^2\frac{k\pi}7} - \cos\tfrac{k\pi}7\Bigr)^2 + \frac{\bigl(1-\cos^2\frac{k\pi}7\bigr)^2}{\bigl(1+\cos^2\frac{k\pi}7\bigr)^2}.$$ Again after some simplification, this becomes $d^2 = \frac{\bigl(1-\cos^2\frac{k\pi}7\bigr)^2}{1+\cos^2\frac{k\pi}7}$, which I prefer to write as $d^2 = \frac{\sin^4\frac{k\pi}7}{2 - \sin^2\frac{k\pi}7}$.

Putting together everything done so far, the product of the lengths of the 18 segments is $$\prod_{k=1}^6 \frac{\sin^3\frac{k\pi}7}{\sqrt{2 - \sin^2\frac{k\pi}7}}.$$ To evaluate that product, notice that the numbers $\sin\frac{k\pi}7\ (1\leqslant k\leqslant6)$, together with $0$, are the solutions of the equation $\sin(7\theta) = 0$. But (either by working with trig. identities or by using de Moivre's theorem) $$\sin(7\theta) = 7\sin\theta - 56\sin^3\theta + 112\sin^5\theta - 64\sin^7\theta.$$ After discarding the solution $\sin\theta=0$, you see that $\sin\frac{k\pi}7\ (1\leqslant k\leqslant6)$ are the solutions of $7 - 56s^2 + 112s^4 - 64s^6 = 0$. The product of the roots of that equation is $\frac{7}{64}$. Therefore $$\prod_{k=1}^6 \sin^3\frac{k\pi}7 = \frac{7^3}{2^{18}}.$$ Next, putting $x = 2 - s^2$ you see that $2 - \sin^2\frac{k\pi}7\ (1\leqslant k\leqslant6)$ are the solutions of $7 - 56(2-x) + 112(2-x)^2 - 64(2-x)^3 = 0$. That simplifies to $64x^3 - 272x^2 + 376x - 169 = 0$, and the product of the roots is $\frac{169}{64}$. Each value of $x$ corresponds to two (equal) values of $s$, so we should square that answer. But then we want to take the square root (getting back to where we started from), for the formula $$\prod_{k=1}^6 \frac{1}{\sqrt{2 - \sin^2\frac{k\pi}7}} = \frac{169}{64}.$$ Finally, $$\prod_{k=1}^6 \frac{\sin^3\frac{k\pi}7}{\sqrt{2 - \sin^2\frac{k\pi}7}} = \frac{7^3/2^{18}}{169/2^6} = \frac{7^3}{169\cdot2^{12}}.$$
 
It' correct.
 
Back
Top