MHB Adding in Base 20: 1HE1C +JDF0 = 2H7GC

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Base
AI Thread Summary
The discussion focuses on adding two numbers in base 20: 1HE1C and JDF0, resulting in 2H7GC. The calculation involves converting each digit to base 10 for easier addition, then converting back to base 20. The key steps include adding C and 0, F and 1, and E and D, which requires carrying over values when sums exceed 20. The final carry from adding H and J leads to the correct result of 2H7GC. This method emphasizes the importance of understanding base conversions for accurate arithmetic in non-decimal systems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Add in base 20

1HE1C +JDF0= 2H7GC from calculator
By hand I couldn't get the H

Using
1
2
3
4
5
6
7
8
9
A=10
B=11
C=12
D=13
E=14
F=15
G=16
H=17
I=18
J=19
K=20
 
Mathematics news on Phys.org
as we are not comfortable with base 20 let us convert to base 10 (digit by digit) and concert it back
1HE1C
JDF 0
--------
2H7GC

C+ 0 = C OK
F + 1 = G OK
$E + D = (14 + 13)_{10} = 27_{10} = 17_{20}$ so 7 and carry 1
$H+J + 1 = (17 + 19 + 1)_{10} = 37_{10} = {1H}_{20}$ so H and carry 1
$1+1= 2$
 
learned this method in a CS FORTRAN class a long time ago ...

Let $x=20$

1HE1C = $x^4 + 17x^3 + 14x^2 + x + 12x^0$

JDF0 = $19x^3 + 13x^2 + 15x + 0x^0$

sum ...

$x^4 + (20+16)x^3 + (20+7)x^2 + 16x + 12x^0$

$x^4 + 20x^3 + 16x^3 + 20x^2 + 7x^2 + 16x + 12x^0$

$x^4 + x^4 + 16x^3 + x^3 + 7x^2 + 16x + 12x^0$

$2x^4 + 17x^3 + 7x^2 + 16x + 12x^0$ = 2H7GC
 
skeeter said:
learned this method in a CS FORTRAN class a long time ago ...

Let $x=20$

1HE1C = $x^4 + 17x^3 + 14x^2 + x + 12x^0$

JDF0 = $19x^3 + 13x^2 + 15x + 0x^0$

sum ...

$x^4 + (20+16)x^3 + (20+7)x^2 + 16x + 12x^0$

$x^4 + 20x^3 + 16x^3 + 20x^2 + 7x^2 + 16x + 12x^0$

$x^4 + x^4 + 16x^3 + x^3 + 7x^2 + 16x + 12x^0$

$2x^4 + 17x^3 + 7x^2 + 16x + 12x^0$ = 2H7GC

that would be a little bit easier to remember!
 
karush said:
Add in base 20

1HE1C +JDF0= 2H7GC from calculator
By hand I couldn't get the H
First, C+ 0= C. That's the right-most "digit".
1+ F= 1+ 15= 16= G. That's the next "digit".
E+ D= 14+ 13= 27= 20+ 7= 17. The next "digit" is 7 and "carry the 1".
That may be what's keeping you from "getting the H".
H+ J= 17+ 19= 36 and "carrying the 1", 27= 20+ 17= 1H. The next "digit" is H and "carry the 1"
With that carry, the last addition is 1+ 1= 2.
That's how we get 2H7GC!

Using
1
2
3
4
5
6
7
8
9
A=10
B=11
C=12
D=13
E=14
F=15
G=16
H=17
I=18
J=19
K=20
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top