MHB Adding numbers with exponents (confusion)

some one1
Messages
2
Reaction score
0
Alright here's my confusion, if i take say 3x^2 + 4x^2 ill end up with 7x^2 which i accepted was the correct way to think about it, but if i try the same problem without the x variable doing the same method, 3^2 + 4^2 = 7^2 this is obviously not the correct answer. Instead 3^2 = 9 and 4^2 = 16 so together they equal 25 (7^2 = 49 is incorrect!)

Now if your planning on telling me i should just treat 3x^2 differently then 3^2 without explaining why, well that is not going to help my understanding. I need someone to explain it to me using a common sense approach as to why you do this instead of this, just following rules blindly is next to magic when it comes to trying to fully understand what's going on.

I really appreciate the help, math has always been my weak point.
 
Mathematics news on Phys.org
$$3x^2=x^2+x^2+x^2$$

$$4x^2=x^2+x^2+x^2+x^2$$

$$3x^2+4x^2=x^2+x^2+x^2+x^2+x^2+x^2+x^2=7x^2$$
 
In rewriting $3x^2+4x^2$ to $7x^2$ we use the law of distributivity of multiplication over addition. This law says
\[
(a+b)c=ac+bc\qquad(1)
\]
for all numbers $a$, $b$ and $c$. In this case, $a=3$, $b=4$ and $c=x^2$. Substituting these values into (1) gives
\[
(3+4)x^2=3x^2+4x^2
\]
so we can indeed rewrite the right-hand side to the left-hand side and then rewrite it further to $7x^2$ since $3+4=7$.

On the other hand, the expression $3^2+4^2$ simply does not have the shape of either the left- or the right-hand side of (1). You can't match it with (1), i.e., you can't come up with three values such that replacing $a$, $b$ and $c$ in (1) by those values would give $3^2+4^2$. Therefore, (1) can't be used to rewrite $3^2+4^2$.
 
greg1313 said:
$$3x^2=x^2+x^2+x^2$$

$$4x^2=x^2+x^2+x^2+x^2$$

$$3x^2+4x^2=x^2+x^2+x^2+x^2+x^2+x^2+x^2=7x^2$$

Thanks, i think i understand what i was doing wrong with how i was looking at it, for example, 2x^2 + 2x^2 = 4x^2, if x=2 then 4x^2 = 16 which is the same as 2^3+2^3 which equals 16.
looking at how they are the same helps me to see the obvious mistake i was making, i was looking at 2^3 and was confusing the base with how i understood coefficients to work. but by comparing them with equal examples to one another i saw the obvious difference and mistake in my understanding.

Thank you for helping me, it has finally clicked with my common sense.
 
$3x^2+4x^2$ is the same as 3 apples + 4 apples...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
10
Views
2K
Replies
5
Views
2K
Replies
3
Views
1K
Replies
12
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Back
Top