Adding subluminal and superluminal velocities.

  • Thread starter Thread starter mrspeedybob
  • Start date Start date
  • Tags Tags
    Superluminal
mrspeedybob
Messages
869
Reaction score
65
Suppose we have a long row of rods, each of which is equipped with a clock and a solenoid which can raise and lower the rod. All the clocks are synchronized. Each rod is programed to raise and lower at a slightly different time so that in the rest frame of the apparatus the rods rise and fall in a wave that moves at 1.5 c. What you would actually see from the midpoint of the row would be the wave moving away from you in both directions at different speeds, but after accounting for the travel time of the light you would realize that what you saw was a single wave traveling past you at 1.5 c.

Now suppose a spaceship travels along the row of rods at 0.5 c in the opposite direction of the wave. The ship observes the wave, accounts for the travel time of the light in its own frame of reference, and calculates the speed of the wave. Using the formula for the addition of relativistic velocities I get that it should observe a speed of 1.14 c.

So the ship moving in the opposite direction of the wave observes a lower wave velocity then the observer standing still?

I then computed the relative velocity of the wave for a ship moving in the same direction at 0.5 c and came up with a result of 4 c.

This seems completely counterintuitive. Is this just one of those counterintuitive results of SR or am I applying the formula incorrectly? Does the formula for adding relativistic velocities not apply to superluminal velocities?
 
Physics news on Phys.org
It is counter-intuitive, but it is not wrong. With the right speed in the direction of the wave, the wave will even get an "infinite speed" (all rods move at the same time) - and if you increase the speed of the spaceship, the wave will go in the opposite direction.

I guess (but I did not check) that the velocity addition formula still works.
 
If you visualise how the Lorentz transform changes the slopes of lines, if a speed lower than c is increasing towards c, then a speed faster than c is decreasing towards c.

Animated_Lorentz_Transformation.gif

Image credit: Jonathan Doolin, Wikipedia, CC BY-SA 2.5
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top