- #1
- 3,917
- 243
Homework Statement
I must show several properties about linear operators using the definition of the adjoint operator.
A and B are linear operator and ##\alpha## is a complex number.
The first relation I must show is ##(\alpha A + B)^*=\overline \alpha A^*+B^*##.
Homework Equations
The definition I have an an adjoint is: ##A^*## is the adjoint of ##A## if ##\langle g,Af \rangle = \langle A^* g ,f \rangle## where f and g are any vectors in a Hilbert space.
The Attempt at a Solution
Let ##C^*=(\alpha A+B)^*##. Using the definition of adjoint I get: ##\langle C^*g,f \rangle=\langle g, Cf \rangle \Rightarrow \langle (\alpha A+B)^*g ,f \rangle =#### \langle g, (\alpha A+B)f \rangle =\langle g, \alpha A \cdot f \rangle + \langle g, Bf \rangle = \alpha \langle g, Af \rangle + \langle g ,Bf \rangle = \alpha \langle A^*g, f \rangle + \langle B^*g ,f \rangle##.
But I'm getting lost. I've no idea how I can obtain A, B, A^* and B^* using the definition of the adjoint.
Oh wait, on my draft I think I have finished the "proof". The last expression is worth ##\langle \overline \alpha A^*g ,f \rangle + \langle B^* g, f \rangle = \langle (\overline \alpha A^* + B^*)g ,f \rangle##. Then by associativity ##(\alpha A+B)^*=\overline \alpha A^* + B^*##.
Does this look right?