mnb96
- 711
- 5
Hello,
we known that for each linear operator \phi:\mathbb{R}^n\rightarrow \mathbb{R}^n there exists an adjoint operator \overline{\phi} such that: <\phi(\mathbf{x}),\mathbf{y}>=<\mathbf{x},\overline{\phi}(\mathbf{y})> for all x,y in ℝn, and where <\cdot,\cdot> is the inner product.
My question is: can we give an analogous definition of adjoint operator when \phi:\mathbb{R}^n\rightarrow \mathbb{R}^n is a diffeomorphism of ℝn?
we known that for each linear operator \phi:\mathbb{R}^n\rightarrow \mathbb{R}^n there exists an adjoint operator \overline{\phi} such that: <\phi(\mathbf{x}),\mathbf{y}>=<\mathbf{x},\overline{\phi}(\mathbf{y})> for all x,y in ℝn, and where <\cdot,\cdot> is the inner product.
My question is: can we give an analogous definition of adjoint operator when \phi:\mathbb{R}^n\rightarrow \mathbb{R}^n is a diffeomorphism of ℝn?