(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose that the sequence {a_n} converges to A. Define the sequence {b_n} by:

b_n = (a_n +a_(n+1) )/2

Does the sequence {b_n} converge? If so, specify the limit and prove your conclusion. Otherwise, give an example when this is not true.

2. Relevant equations

3. The attempt at a solution

Me and some class mates tried to use the sandwich theorem, but are not sure if it applies here:

Suppose that {a_n}, {k_n}, and {c_n} are three sequences. NOTE: k_n = a_(n+1). Suppose there exists an element n from N, such that

a_n≤k_n≤c_n

Suppose that a_n and c_n converge to A, then, by the limit definition, there exists an n_2 such that |a_n-A|<ε

the same thing for c_n, there exists an n_3 such that |c_n-A|<ε

n* max {n_1, n_2, n_3}

A-ε≤a_(n )≤A+ε

A-ε≤c_(n )≤A+ε

then A-ε≤a_(n )≤k_n≤c_n≤A+ε so that means that K_n converges to A, but k_n is actually

a_(n+1), so then a_(n+1) converges to A.

Now, since b_n =( a_n +a_(n+1))/2

take the limit of b_n and by limit preperties you find that the limit of b_n is A.

I dont know if this is the right solution for this problem, we also thought about representing the a_n as a sequence that converges to A, such as a_n =A, but Im not sure since it seems we are asked to prove this generally.

Any hints would be highly appreciated,

thank you very much,

Emira!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Advanced Calculus Proof-limit of a sequence.

**Physics Forums | Science Articles, Homework Help, Discussion**