- #1
Color_of_Cyan
- 386
- 0
- Homework Statement:
-
For a circuit, applying Laplace transform, the output is related to input by:
V_o(S)=(N(s) V_i(s) - s^2+s-2)/D(s),
where D(S) = (s^3 + s^2 + 1).
Find ALL initial conditions (there is no need to know N(s) ).
- Relevant Equations:
-
Partial Fraction Expansion, Laplace Transforms:
d^n x(t) / dt^n <---> s^n X(S) - s^n - 1x(0-) – s^(n-2)x'(0-) – s^(n-3)]x''(0-) ….
dx(t)/dt <---> sX(s) – x(0-)
d^2x(t)/dt^2 <---> s^2X(s) – sx(0-) – x/(0-)
Vo(S) = [ N(s)Vi(s) + (- s2 + s - 2) ] / s3 + s2 + 1 ;
can ignore (-s^2 + s - 2).
From relevant equations:
Vo(S) = [N(s)*Vi(s)]/(s^3 + s^2 + 1); -> (d3Vo(t)/dt3) + (d2Vo(t)/dt2) + Vo(t) = N(t)(dvi)/dt
L[vi(t)] = t to s domain: [s3Vo(s) - s2Vo(0-) - SV'o(0-) - Vo''(0-)]Vo(s) + s2 - SVo - V'o(0)] Vo(s) + Vo(s) = N(Vi)(s)
= [s3 V(s) - s2 + s + 2] V0(s) + [s2 - s - 1]V0(s) + V0(s) = N(Vi(s))
I'm sort of lost simplifying this now. I know I'm supposed to set up for partial fraction expansion eventually but not sure how.
can ignore (-s^2 + s - 2).
From relevant equations:
Vo(S) = [N(s)*Vi(s)]/(s^3 + s^2 + 1); -> (d3Vo(t)/dt3) + (d2Vo(t)/dt2) + Vo(t) = N(t)(dvi)/dt
L[vi(t)] = t to s domain: [s3Vo(s) - s2Vo(0-) - SV'o(0-) - Vo''(0-)]Vo(s) + s2 - SVo - V'o(0)] Vo(s) + Vo(s) = N(Vi)(s)
= [s3 V(s) - s2 + s + 2] V0(s) + [s2 - s - 1]V0(s) + V0(s) = N(Vi(s))
I'm sort of lost simplifying this now. I know I'm supposed to set up for partial fraction expansion eventually but not sure how.