B Algebra Help Needed: Understanding Algebraic Manipulations and Techniques

  • B
  • Thread starter Thread starter Jehannum
  • Start date Start date
  • Tags Tags
    Algebra
Jehannum
Messages
102
Reaction score
26
I'm reading a textbook that does a couple of algebraic manipulations in one step (in order to get the expressions ready for the binomial theorem). I'm unfamiliar with this step. Could anyone expand it into several steps? It's using some kind of algebraic standard technique or result that I don't know.

Here's the first one:

(x + dx) ^ -2 becomes x ^ -2 (1 + dx / x) ^ -2​

The second one is:

(x + dx) ^ 0.5 becomes x ^ 0.5 (1 + dx / x) ^ 0.5​

Am I correct in inferring that there's a general rule:

(a + b) ^ c becomes a ^ c (1 + b / a) ^ c​

If so, is there a name for this rule, and are there any conditions on the values of a, b and c for it to work?
 
Mathematics news on Phys.org
The first rule to be applied is ##(x\cdot y)^p=x^p \cdot y^p## where the associativity (##x\cdot (y \cdot z) = (x \cdot y) \cdot z##) and commutativity (##x \cdot y = y \cdot x##) of multiplication is used and which gives ##a^c \cdot (1+\frac{b}{a})^c=(a \cdot (1+\frac{b}{a}))^c##. Next we use the distributive law ##x \cdot (y+z)=x \cdot z+y\cdot z## to get ##(a \cdot (1+\frac{b}{a}))^c=(a \cdot 1 +a \cdot \frac{b}{a})^c=(a+b)^c## where again associativity of multiplication is used. The only condition that has to be valid is ##a \neq 0## for otherwise the division wouldn't be defined.
 
  • Like
Likes Jehannum
Jehannum said:
I'm reading a textbook that does a couple of algebraic manipulations in one step (in order to get the expressions ready for the binomial theorem). I'm unfamiliar with this step. Could anyone expand it into several steps? It's using some kind of algebraic standard technique or result that I don't know.

Am I correct in inferring that there's a general rule:

(a + b) ^ c becomes a ^ c (1 + b / a) ^ c​

If so, is there a name for this rule, and are there any conditions on the values of a, b and c for it to work?

That's a basic property of exponents.

https://www.mathsisfun.com/algebra/exponent-laws.html
 
fresh_42 said:
The first rule to be applied is ##(x\cdot y)^p=x^p \cdot y^p## where the associativity (##x\cdot (y \cdot z) = (x \cdot y) \cdot z##) and commutativity (##x \cdot y = y \cdot x##) of multiplication is used and which gives ##a^c \cdot (1+\frac{b}{a})^c=(a \cdot (1+\frac{b}{a}))^c##. Next we use the distributive law ##x \cdot (y+z)=x \cdot z+y\cdot z## to get ##(a \cdot (1+\frac{b}{a}))^c=(a \cdot 1 +a \cdot \frac{b}{a})^c=(a+b)^c## where again associativity of multiplication is used. The only condition that has to be valid is ##a \neq 0## for otherwise the division wouldn't be defined.

Thank you. That's clear now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top