Hurkyl
Staff Emeritus
Science Advisor
Gold Member
- 14,922
- 28
Notation has nothing to do with it -- it simply doesn't make sense to ask for the line through two points if the two points are equal. If the algebraically-minded student says "you can't do that becuase rise-over-run is 0/0" or "that doesn't work because 0m=0 doesn't have a unique solution", then good for him. If the geometrically-minded student says "you can't do that, because every line through one point is also a line through the other point", then good for him. If the student objects on some other (valid) grounds, then good for him.chrisr999 said:Now, the triangle that is ... "disappearing" ... will of course cause trouble for students that have become "notationally dependent".
And the correct response to the student? "Yes, you're right, I cannot do that. We're going to have to find some other method of computing the tangent line. But does this failed attempt give us any ideas?"
And ideally, the student springs forth with something involving limits, having just learned about them. I don't care if they come up with the limit of rise-over-run, or the limit of the angle the line makes with horizontal, or the limit of the position of where the secant lines meet some other auxiliary line, or something else. Even coming up with the idea of the limiting line is a good one, although that requires us to do some extra work to figure out what we mean by that.
If this was a course where they were actually being taught about infinitessimals, it would be enough for them to recognize that choosing the two points infintiessimally close should give us a secant line infinitessimally close to the tangent line.
But what I don't want them to get stuck in their heads is "oh, maybe everything I know about Euclidean geometry is wrong and there really is a tiny triangle of zero size there" or "if we just choose the second point really close to the first one, then that secant line is the tangent line". But those are exactly the ideas you are reinforcing.
Are you trying to get the student to honestly-and-truly think in terms of a triangle-like thing of zero size? Your PDF says both yes and no, but a clear answer would nice.
* If the answer is yes, then you have put the idea of infinitessimal geometry into their heads, and as the saying goes, "a little learning is a dangerous thing". It is a Bad Idea to do that unless you commit to the idea of fleshing out and teaching some form of infintiessimal geometry in parallel with the ideas from calculus. Are you doing that?
* If the answer is no, then the problem is that you never make clear that your zero-size triangle-like thing is a completely fictitious idea that you simply used to guide you towards some other method that works -- you never remove the triangle from the argument! The steps of the derivation is left in the form "first produce the mythical triangle, then change the triangle into something that really exists", and you never demonstrate how that gets turned into a new argument that doesn't involve any mythical objects at all.
And furthermore in the no case, I question the value of teaching the student to think in terms of mystical objects -- this is not frontier research in mathematics, this is something we've been working out for centuries! If you want them to think in terms of zero-size triangles, then you should teach them infinitessimal geometry. Otherwise, the fact we arrive at a zero-size triangle should be viewed as an obstruction to our calculation, and now the game is to find a way around/eliminate the obstruction.
Last edited: