I Amplitude moving through detectors

Swamp Thing
Insights Author
Messages
1,028
Reaction score
763
We have two thin parallel detectors, and a ##|1\rangle## photon state passes through them. Each detector has a 10% chance of catching the photon. How can I write the final state?

I'm thinking something like ##\sqrt{0.1}|1_A\rangle |0_B\rangle |0\rangle+\sqrt{0.09}e^{-j\theta_1}|0_A\rangle |1_B\rangle |0\rangle + \sqrt{0.81}e^{-j\theta_2}|0_A\rangle |0_B\rangle a^{\dagger}a ##

Is this correct? (If not, what is the correct way?)

About the phases ##\theta_1## and ##\theta_2## , would they be the same as if the medium was lossless? To keep it simple, let's say the speed of light in the lossy medium is the same as vacuum.

But even if it is technically OK, it means that I have set the coefficients by hand, based on what I expect to see. Can it be written so that one puts in only 0.1 and the rest comes out from "shut up and calculate"? I mean, this is a toy problem, but how do we "automate" more complex stuff?
 
Last edited:
Physics news on Phys.org
Swamp Thing said:
How can I write the final state?

You can't, because there isn't a single "final state". There are three possible "final states": detector #1 detects a photon, detector #2 detects a photon, or neither detector detects a photon. And each one only happens if the ones before it do not (e.g., if detector #1 detects a photon, there is no possibility of detector #2 detecting one). There is no way to write down a single "state" (i.e., wave function/linear combination of kets) that covers all of these possibilities (unless you want to include the detectors as quantum objects and add their states and their entanglement with the photon).
 
Thank you, I found that really useful.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top