Amplitude of the induced voltage across the coil

Click For Summary
The discussion centers on calculating the amplitude of induced voltage across a rotating coil in a magnetic field. A 5-turn coil with a cross-sectional area of 5 cm² is rotating at 1200 RPM in a 10 mT magnetic field. Two methods for calculating voltage are explored, one using the formula V(t) = N•B•ω•A•sin(ωt) and the other using the change in magnetic flux over time. Concerns are raised about the proper incorporation of the 1200 RPM rotation speed in the calculations. The suggestion is made to express the magnetic flux as a sinusoidal function for differentiation to accurately find the induced voltage.
lee.perrin@gm
Messages
8
Reaction score
0
If anyone can advise that would be great.

1. The plane of a 5 turn coil of 5mm² cross sectional area is rotating a 1200 r.p.m in a magnetic field of 10mT.

Q. Calculate the amplitude of the induced voltage across the coil

Data:

5 turns
c = 1200 rpm
A = 5cm²
B = 10 mT

2. φ = N.B.A φ = 5×10×10^-3 ×5 × 10^-2
φ = 2.5 ×10^-3

V = dφ/dt or N.A. dB/dt

The equation thought to have been used is the following but the Length is not vissible to me.

V/L = c x B c being the speed
B field
L lenth of wire

3. I have tried two avenues please advise

a: V(t) = -N•d(B•A)/dt = -N•B•dA/dt = N•B•ω•A•sin(ωt)
V(t) =(5)(10x10^-3)(125.66370599999999)(5)sin(ωt) = 31.415 sin(ωt) volts.

Or

b: And using the following, saying t = 60 sec

Then φ = N.B.A φ = 5×10×10^-3 ×5 × 10^-2
φ = 2.5 ×10^-3

And V = dφ/dt or N.A. dB/dt = 4.17x10^-3 V

My concern here is that 1200rpm was not used.
 
Last edited:
Physics news on Phys.org
lee.perrin@gm said:
If anyone can advise that would be great.

1. The plane of a 5 turn coil of 5mm² cross sectional area is rotating a 1200 r.p.m in a magnetic field of 10mT.

Q. Calculate the amplitude of the induced voltage across the coil

Data:

5 turns
c = 1200 rpm
A = 5cm²
B = 10 mT

2. φ = N.B.A φ = 5×10×10^-3 ×5 × 10^-2
φ = 2.5 ×10^-3

V = dφ/dt or N.A. dB/dt

The equation thought to have been used is the following but the Length is not vissible to me.

V/L = c x B c being the speed
B field
L lenth of wire

3. I have tried two avenues please advise

a: V(t) = -N•d(B•A)/dt = -N•B•dA/dt = N•B•ω•A•sin(ωt)
V(t) =(5)(10x10^-3)(125.66370599999999)(5)sin(ωt) = 31.415 sin(ωt) volts.

Or

b: And using the following, saying t = 60 sec

Then φ = N.B.A φ = 5×10×10^-3 ×5 × 10^-2
φ = 2.5 ×10^-3

And V = dφ/dt or N.A. dB/dt = 4.17x10^-3 V

My concern here is that 1200rpm was not used.

You should write out the function φ(t) (hint: it is a sinusoidal function), then differentiate it to find V(t)...
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
926
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
877
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K