An easy question about cartesian product

  • Thread starter Thread starter C0nfused
  • Start date Start date
  • Tags Tags
    Cartesian Product
C0nfused
Messages
139
Reaction score
0
Hi everybody,
When we have two sets A and B , we define the cartesian product of A and B as the set A*B={(x,y): (x element of A) and (y element of B)}. We also define A*A*...*A (n factors)=A^n. So when we write (A^2)*B, this is the same as A*A*B? I mean, for example (R^2)*R is the same as R*R*R, or ((1,2),3)=(1,2,3) ?
Thanks
 
Physics news on Phys.org
They're isomorphic as vector spaces, i.e. they are the same. (unless you want to get hyper formal, in which case I think you need to stick with just isomorphic).
 
Hum, I answered for R as a vector space, sorry. Given any 2 sets, then you have a 1-1 and onto mapping between (A^2)xB and AxAxB.
 
Thanks for your answer. Actually i am asking this question because I read somewhere that the graph of a function f (if it's called this way) is the set G={(x,f(x)):x element of f's domain}. So if f: (R^2) -> R then the vectors (x,y,f(x,y) that are points of f's 3D representation must be the same as ((x,y),f(x,y)). ( I hope u understood what i am asking).

Thanks again
 
Yes, I think I do.
And yes, they are the same. Eventually, it's just 2 different ways of looking at it- just like thinking of f(x,y) as a function of 2 scalar variables or of 1 vector variable.
I hope you understand what I'm trying to say.:)
 
To put in "proper" terms (ie ones that might help you search for other things on it) you're getting towards the idea that the cartesian product is associative: that is there are natural isomorphisms from (AxB)xC to Ax(BxC)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top