MHB Improper Integral Convergence & Divergence

AI Thread Summary
The convergence of the improper integral $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$ depends on the values of α and β. It diverges when β < 0 for any α. When β > 0 and α + 1 < 0, the integral converges, while it diverges if β > 0 and α + 1 > 0. The Limit Comparison Test is used to analyze the behavior of the integral in these cases. Understanding these conditions is crucial for determining the integral's convergence or divergence.
Also sprach Zarathustra
Messages
43
Reaction score
0
When the following improper integral converges? When it diverges? $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$
 
Mathematics news on Phys.org
Also sprach Zarathustra said:
When the following improper integral converges? When it diverges?

$$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$

Hi Also sprach Zarathustra,

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

We shall use the Limit Comparison Test to determine the convergence/divergence of this improper integral.

Let, \(\displaystyle f(x)=\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} \mbox{ and }g(x)=x^{\alpha}\). It is clear that both \(f(x)\mbox{ and }g(x)\) are positive for all \(x>0\).

Case 1: When \(\mathbf{\beta<0}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=1\]

It is clear that, \(\displaystyle\int_{0}^{\infty}x^{\alpha}\,dx\) diverges for each \(\alpha\in\Re\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta<0\]

Case 2: When \(\mathbf{\beta>0\mbox{ and }\alpha+1<0}\)

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}=\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}+\int^{ \infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

Since \(\displaystyle\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) is a proper integral, converge/divergence of \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) depends on the convergence/divergence of \(\displaystyle\int^{\infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=0\]

\(\displaystyle\int_{1}^{\infty}x^{\alpha}\,dx=-\frac{1}{\alpha+1}\mbox{ for each }\alpha+1<0\)

\[\therefore\int^{\infty}_{1}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

\[\Rightarrow\int^{\infty}_{0}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

Case 3: When \(\mathbf{\beta>0\mbox{ and }\alpha+1>0}\)

For this case I need a little bit of help from the Wolfram Integrator. :)

It could be shown that, \(\displaystyle \frac{x^{ \alpha}}{1+x^{\beta}\sin^2(x)}>\frac{x^{ \alpha}}{1+x^{\beta}}\mbox{ for }x>0\,.\)

For \(\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}\) the Wolfram Integrator gives,

\[\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}=\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\]

Where \(\,_2F_1\) is the Hypergeometric series.

\[\Rightarrow\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}=\lim_{x \rightarrow\infty}\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\right\}-\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,0\right)}{\alpha+1}\right\}\]

Since the \(x^{ \alpha+1}\) term explodes as \(x\rightarrow\infty\) the first term in the right hand side diverges. The radius of convergence of the Hypergeometric series is 1 and therefore the second term has a finite value. Hence, \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}\mbox{ should diverge.}\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta>0\mbox{ and }\alpha+1>0\]
 
Last edited:
I was trying to solve the integral that seemed unsolvable , actually I didn't read the
question :o
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top