MHB Anakin1369's Limit of (tanh(x))^x: Yahoo Answers

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Form Limit
AI Thread Summary
The limit of (tanh(x))^x as x approaches infinity is evaluated to be 1. The process involves recognizing the indeterminate form 1^∞ and applying the natural logarithm to simplify the limit. By using properties of logarithms and L'Hôpital's rule, the limit is transformed into a manageable form, ultimately leading to the conclusion that ln(L) equals 0. This results in L being e^0, which equals 1. The discussion encourages further calculus inquiries in the forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

What is the limit of (tanh(x))^x as x approaches infinity?

Hi. If you could provide me with the process that leads to the answer that would really help. Thanks.

Here is a link to the question:

What is the limit of (tanh(x))^x as x approaches infinity? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Anakin1369's question at Yahoo! Answers regardina limit having indeterminate form

Hello Anakin1369,

We are given to evaluate:

$$\lim_{x\to\infty}\tanh^x(x)=L$$

Observing that we have the indeterminate form $$1^{\infty}$$, I recommend taking the natural log of both sides:

$$\ln\left(\lim_{x\to\infty}\tanh^x(x) \right)=\ln(L)$$

Since the natural log function is continuous, we may "bring it inside the limit" to get:

$$\lim_{x\to\infty}\ln\left(\tanh^x(x) \right)=\ln(L)$$

Now, using the log property $$\log_a\left(b^c \right)=c\cdot\log_a(b)$$ we may write:

$$\lim_{x\to\infty}x\ln\left(\tanh(x) \right)=\ln(L)$$

Bringing the $x$ out front down into the denominator, we have:

$$\lim_{x\to\infty}\frac{\ln\left(\tanh(x) \right)}{\frac{1}{x}}=\ln(L)$$

Now we have the indeterminate form $$\frac{0}{0}$$, and so application of L'Hôpital's rules gives:

$$\lim_{x\to\infty}\frac{\text{csch}(x)\text{sech}(x)}{-\frac{1}{x^2}}=\ln(L)$$

$$-\lim_{x\to\infty}\frac{x^2}{\sinh(x)\cosh(x)}=\ln(L)$$

The exponential function in the denominator "dominates" the quadratic in the numerator, hence we have:

$$0=\ln(L)$$

Converting from logarithmic to exponential form, we then find:

$$L=e^0=1$$

and so we may conclude:

$$\lim_{x\to\infty}\tanh^x(x)=1$$

To Anakin1369 and any other guests viewing this topic, I invite and encourage you to post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top