Analysis 1 Homework Help with Complex Numbers

Click For Summary
SUMMARY

The discussion focuses on proving the equality of the conjugate of a quotient of complex numbers, specifically that if z and w are complex numbers, then bar(z/w) = bar(z)/bar(w). The user presents their work involving the expressions for z and w, defined as z = a + bi and w = c + di, and manipulates these to show the equivalence. The proof is clarified by emphasizing the importance of organizing the work to ensure clarity in the argument, ultimately leading to the conclusion that both sides of the equation yield the same result.

PREREQUISITES
  • Understanding of complex numbers and their conjugates
  • Familiarity with algebraic manipulation of complex expressions
  • Knowledge of polar coordinates in complex analysis
  • Ability to construct mathematical proofs
NEXT STEPS
  • Study the properties of complex conjugates in detail
  • Learn how to manipulate complex fractions effectively
  • Explore the use of polar coordinates in complex number proofs
  • Practice constructing formal mathematical proofs
USEFUL FOR

Students studying complex analysis, mathematicians involved in proof construction, and anyone seeking to deepen their understanding of complex number operations.

lema21
Messages
18
Reaction score
9
Homework Statement
If z,w are in C then prove that bar(z/w) = bar(z)/bar(w).
Relevant Equations
z = a+bi
w = c+di
Bar(z) = a-bi
Bar(w) = c-di
I need help actually creating the proof. I've done the scratch needed for the problem, it's just forming the proof that I need help in.
Bar(a+bi/c+di)= (a-bi) / (c-di)
Bar ((a+bi/c+di)*(c-di/c-di)) = ((a-bi/c-di)*(c+di/c+di))
Bar((ac+bd/c^2 +d^2)+(i(bc-ad)/c^2+d^2)) = (ac+bd/c^2+d^2)+(i(ad-bc)/(c^2+d^2))
(ac+bd/c^2+d^2) - (i(bc-ad)/c^2+d^2) = (ac+bd/c^2+d^2) + (i(ad-bc)/c^2+d^2)
ibc+iad/ c^2+d^2 = iad-ibc/ c^2+d^2
-ibc+iad=iad-ibc
 
Physics news on Phys.org
1.1 - 1.2.jpg
 
lema21 said:
Homework Statement:: If z,w are in C then prove that bar(z/w) = bar(z)/bar(w).
Relevant Equations:: z = a+bi
w = c+di
Bar(z) = a-bi
Bar(w) = c-di

I need help actually creating the proof. I've done the scratch needed for the problem, it's just forming the proof that I need help in.
Bar(a+bi/c+di)= (a-bi) / (c-di)
Bar ((a+bi/c+di)*(c-di/c-di)) = ((a-bi/c-di)*(c+di/c+di))
Bar((ac+bd/c^2 +d^2)+(i(bc-ad)/c^2+d^2)) = (ac+bd/c^2+d^2)+(i(ad-bc)/(c^2+d^2))
(ac+bd/c^2+d^2) - (i(bc-ad)/c^2+d^2) = (ac+bd/c^2+d^2) + (i(ad-bc)/c^2+d^2)
ibc+iad/ c^2+d^2 = iad-ibc/ c^2+d^2
-ibc+iad=iad-ibc
This is not what you want to end with, since it's obviously true that ##(-bc + ad)i = (ad - bc)i##
You've shown that ##\overline{\left(\frac z w\right)} = \frac{ac + bd + (ad - bc)i}{c^2 + d^2}## and that ##\frac {\overline z}{\overline w}## equals the same value.

If you have x = some value and y = the same value, what can you conclude?
 
  • Like
Likes   Reactions: lema21
If you are wondering how to state the proof, one very direct way is to go down the left side of your hypothesized equations and then up the right side. That will start with ##\overline{(\frac{z}{w})}## and end up with ##\frac{\overline{z}}{\overline{w}}##, and you can do it so that "=" clearly and undeniably means equals. That is what a proof needs.

PS. Your "=" signs are very confusing. It looks like you are stating equality when you are really just hypothesizing equality and trying to prove that they are equal.
 
Last edited:
Mark44 said:
This is not what you want to end with, since it's obviously true that ##(-bc + ad)i = (ad - bc)i##
You've shown that ##\overline{\left(\frac z w\right)} = \frac{ac + bd + (ad - bc)i}{c^2 + d^2}## and that ##\frac {\overline z}{\overline w}## equals the same value.

If you have x = some value and y = the same value, what can you conclude?
So I can just finish this by stating that since they equal the same value that they then equal each other?
 
lema21 said:
So I can just finish this by stating that since they equal the same value that they then equal each other?
Yes, but you should organize your work a lot better so that whoever is reading it can follow what you're doing.

Show that ##\overline{\left(\frac z w\right)} = \overline{\left(\frac{a + bi}{c + di}\right) } = \frac{ac + bd + (ad - bc)i}{c^2 + d^2}## and then show that ##\frac {\overline z}{\overline w}= \frac{\overline{a + bi}}{\overline{c + di}} = \frac{ac + bd + (ad - bc)i}{c^2 + d^2}##.
From that work, you can conclude that ##\overline{\left(\frac z w\right)} = \frac {\overline z}{\overline w}##
 
  • Like
Likes   Reactions: lema21
Okay, thank you so much :)
 
lema21 said:
Okay, thank you so much :)
Have you considered using polar coordinates for the proof?
 

Similar threads

Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K