Analysis of A-Module Endomorphism \phi: Understanding Kronecker Delta Function

sid_galt
Messages
502
Reaction score
1
Let A, M be a commutative ring and a finitely generated A-module respectively. Let \phi be an A-module endomorphism of M such that \phi (M)\subseteq \alpha\ M where \alpha is an ideal of A. Let x_1,\dots,x_n be the generators of M. Then we know that \displaystyle{\phi(x_i)=\sum_{j=1}^{n} a_{ij}x_j\ (1\leq i\leq n;\ a_{ij}\in \alpha)}.

Then the book I have (commutative algebra by atiyah goes on to say) - That means
\sum_{j=1}^{n} (\delta_{ij}\phi - a_{ij})x_j=0,\ \delta_{ij} being the kronecker delta function This is the part I can't understand - how can you separate \phi form it's argument x_j. How can \phi(x) = \phi\cdot x?
 
Physics news on Phys.org
The equation you quote from the book, is correct but the term within parenthesis is a mapping which is applied to xj instead of multiplying it. The aij part is actually aij times the identity map.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top