- #1
Will Flannery
- 112
- 31
The freefall wiki entry wiki Freefall has an analytic solution for freefall distance in a gravitational field, but ... it doesn't seem to work ... at least i can't get it to work ... here is my MATLAB program to test it ...
clear
G=6.7e-11; % gravitational constant m^3/(kg*s^2)
mEarth = 5.9742e24; % mass of Earth in kg
rEarth = 6.378e6; % radius of Earth in m
% drop a 1kg ball from 100m above the surface of the earth
mu = G*(mEarth + 1);
y0 = rEarth + 100;
t = 1;
x = (3/2*(pi/2-t*sqrt(2*mu/y0^3)))*2/3;
y1 = y0*(x - x^2/5 - 3*x^3/175 - 23*x^4/7875 - 1894*x^5/3931875 - 3293*x^6/21896875 - 2418092*x^7/62077640625);
y0-y1
ans =
9.5639e+04
So, the apple fell 95000 m in the 1st second ... (or I made a mistake)
I tried to check the references, the first has a lot of formulas but not the one above, and the second is behind paywall (The Physics Teacher) and the abstract does not look promising.
Is there an analytic formula anywhere ?
clear
G=6.7e-11; % gravitational constant m^3/(kg*s^2)
mEarth = 5.9742e24; % mass of Earth in kg
rEarth = 6.378e6; % radius of Earth in m
% drop a 1kg ball from 100m above the surface of the earth
mu = G*(mEarth + 1);
y0 = rEarth + 100;
t = 1;
x = (3/2*(pi/2-t*sqrt(2*mu/y0^3)))*2/3;
y1 = y0*(x - x^2/5 - 3*x^3/175 - 23*x^4/7875 - 1894*x^5/3931875 - 3293*x^6/21896875 - 2418092*x^7/62077640625);
y0-y1
ans =
9.5639e+04
So, the apple fell 95000 m in the 1st second ... (or I made a mistake)
I tried to check the references, the first has a lot of formulas but not the one above, and the second is behind paywall (The Physics Teacher) and the abstract does not look promising.
Is there an analytic formula anywhere ?
Last edited: