Angular momentum in Uniform circular flow

Click For Summary
In uniform rotational flow, velocity is proportional to radius (v = wr), while in vortex flow, velocity is inversely proportional to radius, indicating conservation of angular momentum. The confusion arises regarding whether angular momentum is conserved in uniform rotational flow, as it seems to imply constant velocity at all points. The distinction between rigid rotation and potential vortex flow is crucial, as they exhibit different velocity fields. The discussion highlights the need for clarity on whether the book refers to total angular momentum conservation or constant momentum across the flow. Understanding these concepts is essential for grasping the dynamics of fluid motion in different flow types.
Jzhang27143
Messages
38
Reaction score
1
My book says that for uniform rotational flow, the velocity at any point is proportional to r (v = wr.) In vortex flow, the velocity at any point is proportional to 1/r (angular momentum is conserved.) However, in uniform rotational flow, isn't angular momentum also conserved so the same logic applies here? If not, what is changing the angular momentum? I know that physically, uniform rotational flow follows v = wr, but I am confused about angular momentum here.
 
Physics news on Phys.org
It's difficult to parse the phrase "uniform circular flow" because "uniform flow" (I think) means that the velocity is the same at every point in the flow. The velocity is a vector and "circular" suggests a change in direction of velocity as we move to different points in the flow. Is your book talking about total angle momentum being conserved or is it talking about momentum being constant at all points in the flow?
 
I guess, it's a good idea to point out the whole problem described in the book. So I don't know, what's really meant.

Obviously there are two different kinds of flow discussed, namely

(a) rigid rotation

The velocity field then is
##\vec{v}(\vec{r})=\vec{\omega} \times \vec{r}##
with ##\vec{\omega}=\text{const}##.

(b) "potential vortex"
##\vec{v}(\vec{r})=\frac{C}{2 \pi \rho^2} \begin{pmatrix}-y \\ x \\ 0 \end{pmatrix},##
where ##\rho=\sqrt{x^2+y^2}##.
 
One can examine whether momentum is constant over all points in these fields (for a uniform distribution of mass), but I don't see any information about conservation or non-conservation of total momentum.
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 10 ·
Replies
10
Views
632
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
36
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
5K