Another complex line integral question

AI Thread Summary
The discussion revolves around calculating the line integral of |z|²dz from 0 to 1 + 2i along two different paths. The first path, a straight line, yields a correct result of 5/3(1 + 2i). However, the second path, which consists of two segments, produces inconsistent results: 8/3i for the first segment and 13/3 for the second segment. The user is confused about the discrepancies between the results from the two paths, emphasizing that contour integrals depend on the chosen paths. The inquiry seeks to identify the mistake leading to these differing outcomes.
randybryan
Messages
51
Reaction score
0
I have to integrate |z|2dz from 0 to 1 + 2i using the indicated paths. The first path is a straight line from the origin to 1 + 2i and the second has two lines, the first going from 0 to 2i along the y-axis and then from 2i to 1 + 2i, a line parallel to the x axis.

For the first path, the straight line, I used the parameters z = t +2ti and dz = (1 +2i)dt

|z|2 = 5t2 so the integral became \int 5t^2 (1+ 2i) dt between t=0 and t=1

The answer to this integral is 5/3 (1 + 2i), which is correct according to the back of the book.

However I can't get the line integral along the broken paths to generate the same answer. Can anyone spot an obvious mistake?

For the first path, x= 0 so z = 2it and dz = 2idt

|z|2 = 4t2 so the integral becomes \int 8it^2dt between t = 1 and t=0, giving 8/3 i

For path 2, y = 2i, so dy =0 and it just varies along x.

let z = t + 2i dz= 1 and vary from t= 0 to t= 1

|z|2 = t2 + 4

so the integral becomes \int (t^2 + 4)dt between 0 and 1 and the answer is t2/3 + 4t, between t=0 and t=1 which gives 13/3

now 13/3 and 8/3i does not equal 5/3 (1 +2i)

Where have I gone wrong? And I'm sure I've done something embarrassingly stupid
 
Mathematics news on Phys.org
The contour integrals of ##\int_C |z|^2\,dz## depend on the paths!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top